Seiðr: Dataplane Assisted Flow Classification Using ML

Kyle A. Simpson, Richard Cziva, Dimitrios P. Pezaros. University of Glasgow & Lawrence Berkeley National Laboratory

IEEE GLOBECOM 2020.

Introduction and Motivation

(b) TCP BBR

- Want to understand network usage and behaviour: flow classification.
 - E.g., TCP flavours, application type/behaviour.
 - Main differences may lie in *distribution* of a feature.
- Programmable NICs & switches can convert to telemetry, reducing data rate.
 - Per-packet info, accurate timing...
 - But how to scale to > 100Gbps? Many flows with small packets?
- SOLUTION: aggregate measurements in the dataplane.

How?

- For flows matched via control plane (table seidr):
 - Maintain hash table of histograms.
 - Record packet IAT/field/property in matched histogram.
 - Forward packet onto next tables.
 - If enough data, generate histogram via clone + recirculate + replace.
- Compatible with P4 Portable Switch Architecture.
- Histograms sent to any classifier/collector.
- Runtime configurable.

Seiðr: Dataplane Assisted Flow Classification Using ML

Calculated data rate reduction

- Packet conversion to telemetry gives
 O(1) volume reduction...
 - But no reduction in packet rate!
 - 1Mpps client ingest bottleneck.
 - Histograms also reduce packet rate by 1/seq_len
 - Overcome host ingest bottleneck
 - Linear volume reduction (O(seq_len))
- 100Gbps in => 10 Mbps out, 33.3kpps

Use case: TCP flavour detection

- Other works show TCP BBRv1 *unfairness*.
- Can't control CCA usage in large (transit) WANs.
- BBR's algorithm has key differences.
- Main IAT differences:
 - \circ Distributional
 - Fine-grained (sub-ms)

(a) TCP Cubic

BBR Classification – methods and cost

- Approaches
 - Convolutional Neural Networks
 - *k*-Nearest Neighbours
- CNNs longer to train, cheaper to run
 - Low memory use, fast per-histogram test time.
- Online analysis with *k*NNs not feasible
 - Dataset size, memory cost, execution cost.
 - Train cost paid *every time* model *k*NN is created.

Family	Online/Subsequence	n _{classes}	Train	Test	Memory
CNN	\checkmark	2	$(43 \pm 2) \min$	$(49.1 \pm 9.2) \mu s$	409.76 KiB
	\checkmark	4	$(243 \pm 2) \min$	$(50.5 \pm 1.7) \mu s$	410.27 KiB
	X	2	(1.82 ± 0.47) s	$(161.3 \pm 3.9) \mu s$	409.76 KiB
	X	4	(7.94 ± 0.50) s	$(137.7 \pm 1.2) \mu s$	410.27 KiB
k-NN	\checkmark	2	$(21.4 \pm 1.2) \min$	$(323 \pm 69) \mu s$	2.1 GiB
	\checkmark	4			12.58 GiB
	X	2	(0.20 ± 0.06) s	$(54.0 \pm 0.3) \mu s$	332.8 KiB
	×	4	(2.20 ± 0.04) s	$(517.0 \pm 5.0) \mu s$	2.0 MiB

Classification accuracy

- Good at detecting BBR:
 - Online CNNs see >= 85% accuracy, peak F1=0.965.
 - …Accuracy falls to ~50-60% if we add other TCP flavours. (Not shown)
 - *BUT*—BBR still incredibly distinct from predecessors.
 - Conclusion: BBR's *timer*-based approach is detectable vs. classical *cwnd*-based.
- Future?
 - QUIC can use BBR: can we unmask flows this way?
 - Other flows with interesting temporal properties? VoIP?
 - BBR v2? FastTCP?

(a) Application-limited. $FI_{BBR} = 0.935, FI = 0.486.$

Seiðr: Dataplane Assisted Flow Classification Using ML

Conclusions

- Statistical aggregation can be done in P4.
 - Here, via histogramming.
 - Compliant with the *Portable Switch Architecture*.
 - Significant data and packet rate reduction.
- TCP BBR can be told apart from its predecessors.
 - Timer-based algorithm => **inter-arrival times differ**.
 - Differences in **distribution of measurements**.
 - Doesn't work on older variants.
- Histogram reduction works well with this type of classification.
 - Good performance with CNNs, *k*NNs.
- Future—QUIC unmasking?

Questions?

Seiðr: Dataplane Assisted Flow Classification Using ML