
Verilog Implementation of an eBPF execution unit

Performance limited by the clock speed
• 64bits bus, 1 clock cycle per instruction (except jump and memory read)
• Estimate FPGA clock speed ~250MHz, hence 4ns per instruction
• Complex BPF program of 100 instructions takes 400ns to execute
• A single core can handle 1.28Gbps of 64B back-to-back frames and 30Gbps 

MSS-sized packets.

Verilog Implementation of an eBPF execution unit

Programmable Dataplane for Next Generation Networks

Simon Jouet, Richard Cziva, Dimitrios Pezaros
simon.jouet@glasgow.ac.uk richard.cziva@glasgow.ac.uk dimitrios.pezaros@glasgow.ac.uk

https://netlab.dcs.gla.ac.uk

University of Glasgow
Networked Systems Research Laboratory
17 Lilybank Gardens, G12 8RZ, Glasgow

INTRODUCTION

Today’s network programmability mainly provided by OpenFlow:
• Controller is logically-centralized
• Abstraction over a fix set of dataplane functions (packet matching, counters)
• Simplifies Network Management, Evolution and Innovation

• Lots of work in Routing, Traffic Engineering, Quality of Service
enforcement (QoS) or Network Virtualization have leveraged
OpenFlow.

OpenFlow is the defacto Implementation of Software Defined
Networking but only marginally covers the SDN concept:
• Programmability is very limited to a fixed set of features

• supported protocols, statistics, actions …
• Dataplane still remains a blackbox

• Upcoming and custom network protocols (SCTP, QUIC, VxLAN …)
• Custom Routing, Queuing, Load-Balancing, QoS enforcement
• Custom Statistics and Notifications for telemetry

APPROACH

Platform and Protocol-Independent Instruction set:
• The (e)BPF instruction set has been widely used for packet processing,

filtering, and classification
• Linux Kernel, FreeBSD, TCPdump/LibPCAP, Wireshark …

• Platform-independent RISC-like instruction set designed specifically to be
protocol independent and used for real-time packet processing with fixed
time constraints by disabling loops.

• Language support for hashtable lookup, adding support for TCAM an LPM
table lookup is under discussion.

Move away from the typical match-action pipeline:
• Replace linear, multi-stage match-action pipeline with many instances of

eBPF execution units; high programmability at high aggregate throughput
• Use a higher-level programming language to express dataplane behaviour

• P4 to eBPF compiler
• Restricted C to eBPF compiler

eBPF CORE DESIGN

REFERENCES

[1] S. Jouet, R. Cziva, and D. Pezaros, “Arbitrary Packet Matching in OpenFlow,”
in IEEE HPSR ’15
[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C.
Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-independent Packet Processors,” SIGCOMM ’14
[3] IOVisor, “BPF-to-P4 compiler frontend,” github.com/iovisor/.

FUTURE WORK

Example use-cases:
• Line-rate anomaly detection, SYN/FIN ratio, EWMA
• Telemetry, alerts when buffer occupancy or counters reach a threshold

NetFPGA 10G Implementation:
• Evaluate space and speed constraints of a single eBPF core on the NetFPGA

with MAC/PHY IP, ingress and egress queues and TCAM/SRAM memory
• eBPF requires random access to packet memory, added complexity over

reference router implementation using AXI4 stream
• Many-eBPF core implementation with input queue arbiter into a single

packet queue, load sharing against many-cores and queue to egress.
• Consistent read/write from multiple cores to the shared SRAM and TCAM

eBPF SWITCH DESIGN

School of
Computing Science

Program

Packet


