
Container-based Network
Function Virtualization for
Software-Defined Networks

Richard Cziva, Simon Jouet, Kyle J. S. White and Dimitrios P. Pezaros

University of Glasgow, United Kingdom

r.cziva.1@research.glasgow.ac.uk

Middleboxes

•  Hardware-based network appliances to manipulate

network traffic
�  Firewall
�  Load balancer
�  VPN
�  Intrusion Detection and Prevention Systems
� WAN Accelerator
� Web cache

•  Enterprise networks rely on middleboxes
� Middleboxes represent 45% of the network devices
�  The advent of customer devices will further increase the number

Problems with middleboxes

•  They incur significant capital investment

•  They are cumbersome to maintain

•  They can not be extended to run new functionality

•  The proprietary software on which they run, limits

innovation and creates vendor lock-in

•  Decouples network functions from the hosting platform

�  Can reduce capital and operational expenditure

�  Improve resource efficiency

�  Introduce fault-tolerance and scalability

•  Works well with Software-Defined Networking

Network Function Virtualization

Issues

•  Current approach to NFV rely on static infrastructure

•  Static routing: update of every switch routing table to redirect traffic

•  Operator specific implementation for their own environment

•  Poor reuse of software components
�  Deploy and configure once for a specific server
�  Operator specific deployment system(s)

•  Inability to create/destroy network functions quickly
�  Inserting routing rules and deploying + configuring software is complex
�  Costly operation

State of art

•  OpenStack: early stage demos for NFV

•  OPNFV: Linux foundation project, first release “Arno” this April

•  Cloud4NFV: VM-based NFV orchestration for private clouds

•  ClickOS: a custom, high-performance XEN-based VM

•  “Stateless network functions”

•  …

Glasgow Network Functions (GLANF)

•  Main characteristics:

1.  Container-based

2.  Transparent

3.  Infrastructure independent

4.  Open innovation

•  Two key contributions are

1.  Using containers for NFs

2.  End-to-end transparent traffic management (using SDN)

SDN and Containers

•  Software Defined Networking:

�  Already deployed in DCs
�  Central control over the network
�  Can insert/remove new rules quickly from a single software
�  Open specifications / API
�  We used OpenFlow for our prototype

•  Container Based Virtualization
�  Lightweight virtualization
�  Fast create/start/stop/delete
�  High performance

�  Small delay, High throughput, Low memory footprint

�  Reusable / Shareable
�  Traditional software environment
�  We used Docker containers for the prototype

server

server

x16

ToR
OpenFlow

Network Function Virtualization

•  Middleboxes

�  Expensive
�  Provisioned for peak demand
�  Complex to configure and maintain
�  Proprietary software → Vendor lock-in

•  Virtualize the network functions (NFV)
�  Decouple hardware function from hardware platform
�  Use commodity x86 hardware

�  Cheap, well known platform

�  Can deploy existing, vendor independent software
�  BRO, Snort, Iptables, OpenvSwitch …

R
Q
R Q
R

server

server

x16

ToR

LB

GLANF

•  Framework for Network Function Virtualization

�  Infrastructure independent
�  Can be deployed in any OpenFlow environment
�  Doesn’t require any specific hypervisor technology

�  Fast and Simple Deployment
�  Select a network function image
�  Select a host/subnet to enforce specific policy
�  Automatic

�  Selection of hosting server
�  Deployment of network function
�  Insertion of routing rules

�  Open innovation
�  Public/Private repository to share image
�  Open source implementation

GLANF design

•  Router
�  Hosted on the Open Daylight OpenFlow

Controller
�  Creates and inserts the rules to apply a

specific forwarding policy

•  Manager
�  Provides a REST API to the system

•  Agent
�  Daemon running on the GLANF servers
�  Manages containers and local routing
�  Provide host/container status information

•  UI
�  Talks to the Manager
�  Adds/removes network functions

Traffic management step-by-step

1.  Traffic from Server1 to Server4

2.  Need a new Firewall placed between them?
•  Controller find a GLANF server
•  Pull the firewall image
•  Spawn an instance

3.  Apply the policy
•  Reroute the traffic matching:

•  FROM server1

•  TO server2

4.  Chaining Containers
•  Web Cache
•  IDPS

Server 1

ToR
switch

Server 2 Server 3 Server 4
Soft switch

Firewall

OF rule

Agent

Web cache

IDPS

OF rule

Transparent redirection

Inside the GLANF Server

Performance evaluation

1.  Throughput

2.  Performance through NF chains

3.  Idle ping delay

4.  Start and stop time of the NFs

Throughput and delay

Idle ping delay

Start & stop of containers

http://glanf.dcs.gla.ac.uk

Thank you for your attention!

