Container-based Network
Function Virtualization for
Software-Defined Networks

Richard Cziva, Simon Jouet, Kyle J. S. White and Dimitrios P. Pezaros
University of Glasgow, United Kingdom

r.cziva.l@research.glasgow.ac.uk

Middleboxes

- Hardware-based network appliances to manipulate
network traffic
* Firewall
- Load balancer
- VPN
* Intrusion Detection and Prevention Systems
- WAN Accelerator
- Web cache

- Enterprise networks rely on middleboxes
- Middleboxes represent 45% of the network devices
- The advent of customer devices will further increase the number

Problems with middleboxes

- They incur significant capital investment
- They are cumbersome to maintain
- They can not be extended to run new functionality

- The proprietary software on which they run, limits

innovation and creates vendor lock-in

Network Function Virtualization

- Decouples network functions from the hosting platform
- Can reduce capital and operational expenditure
- Improve resource efficiency

* Introduce fault-tolerance and scalability

- Works well with Software-Defined Networking

Issues

Current approach to NFV rely on static infrastructure

Static routing: update of every switch routing table to redirect traffic

Operator specific implementation for their own environment

Poor reuse of software components
+ Deploy and configure once for a specific server

* Operator specific deployment system(s)

Inability to create/destroy network functions quickly
* Inserting routing rules and deploying + configuring software is complex

+ Costly operation

State of art

- OpenStack: early stage demos for NFV

- OPNFV: Linux foundation project, first release “Arno” this April
- Cloud4NFV: VM-based NFV orchestration for private clouds

- ClickOS: a custom, high-performance XEN-based VM

- “Stateless network functions”

Glasgow Network Functions (GLANF)

- Main characteristics:
1. Container-based
2. Transparent
3. Infrastructure independent

4. Open innovation

- Two key contributions are
1. Using containers for NF's

2. End-to-end transparent traffic management (using SDN)

SDN and Containers

- Software Defined Networking:
+ Already deployed in DCs

« Central control over the network

+ Can insert/remove new rules quickly from a single software
* Open specifications / API
+ We used OpenFlow for our prototype

- Container Based Virtualization
- Lightweight virtualization

ToR
OpenFlow

- Fast create/start/stop/delete (-
- High performance m
+ Small delay, High throughput, Low memory footprint I
- Reusable / Shareable :XlG
- Traditional software environment rver

* We used Docker containers for the prototype \)

Network Function Virtualization

- Middleboxes

Expensive M
+ Provisioned for peak demand
- Complex to configure and maintain M
 Proprietary software — Vendor lock-in M
- Virtualize the network functions (NFV) []
- Decouple hardware function from hardware platform ToR
+ Use commodity x86 hardware ()
* Cheap, well known platform @
+ Can deploy existing, vendor independent software I
+ BRO, Snort, Iptables, OpenvSwitch ... : S
server

—

GLANF

- Framework for Network Function Virtualization
 Infrastructure independent
+ Can be deployed in any OpenFlow environment

+ Doesn’t require any specific hypervisor technology

+ Fast and Simple Deployment
+ Select a network function image
+ Select a host/subnet to enforce specific policy
- Automatic
+ Selection of hosting server
* Deployment of network function

+ Insertion of routing rules
* Open innovation

+ Public/Private repository to share image

+ Open source implementation

GLANF design

Router

- Hosted on the Open Daylight OpenFlow
Controller

* Creates and inserts the rules to apply a
specific forwarding policy

Manager
* Provides a REST API to the system

d
Agent (
+ Daemon running on the GLANF servers” =

- Manages containers and local routing
- Provide host/container status information

Ul
+ Talks to the Manager
« Adds/removes network functions

OF SWITCH 2 GLANF User Interface
> N, !
{/ - \ GLANF Router || GLANF Manager |
\\ o O. p.e}“.:l.o\.N :. ../. Open Daylight
\\: :Y/ SDN Controller
OF SWITCH 1 | OF SWITCH 3 N
Corrues) /|| (oFRuLEs) \\\
il N d A\) \V \
VM1 VM VM2 SOFT. SWITCH [CGERUEST]
- Flow
vM | [[[vm wa)| [FnF N / o
GLANF
VM VM VM Docker \[Agent]‘
Server|| Server| |Server GLANF Server |

Tratfic management step-by-step

1. Traffic from Serverl to Server4

ToR

2. Need a new Firewall placed between them? RV
* Controller find a GLANF server S el

e Pull the firewall image \

* Spawn an instance

3. Apply the policy
* Reroute the traffic matching:

FROM serverl
TO server2 Soft switch
Server 1 OF rule Server 3 Server 4
4. Chaining Containers Agent ‘
° Web Cache Firewall
- IDPS Web cache

IDPS

Transparent redirection

OF SWITCH 1
2 3
= NF
VM 1 VM VM2 NFV SERVER
Switch Match Action
1 input_port: 2, src_ip: VM1 | output_port: 1
2 input_port: 1, src_ip: VM1 | output_port: 3
local input_port: 1, src_ip: VM1 | output_port: 2
local input_port: 3, src_ip: VM1 | output_port: 1

Inside the GLANF Server

[OpenVSWitCh\ Container\\

veth1 if1 \
pNIC bridge | | AF_PACKET

veth2 if2 k/

- ~)

g t

REST | Monitor | OVS Agent](—)[Docker]
.

Performance evaluation

1. Throughput
2. Performance through NF chains

3. ldle ping delay

4. Start and stop time of the NF's

Throughput and delay

Throughput (Gb/s)

GLANF —+—
ClickOS ------

GLANF delay ———+-—- 1

-
-, —

40 50 60
Container chain length

1000

800

600

400

200

70 80 90 100

Delay (us)

120
100
80

s1) Aejeg

Idle ping delay

XEN domU KVM e1000

ClickOS GLANF KVM virtio

XEN domO

Start & stop of containers

Time (s)

90

80
70 1
60 -
50 1
40
30 1
20
10

create XEN —+—

create & start GLANF —+—
start GLANF —e—

stop GLANF

M/MD
]
- L'.I]

10 20 30 40 50 60 70 80 90 100
Number of containers

@ Home Network Functions Documentation

Glasgow Network Function

GLANF (Glasgow Network Function) is an open Network Function Virtualization (NFV) framework for
OpenFlow-enabled infrastructures based on Docker containers.

Features
oFswitcH2 | | User Interface _) Container-based: Network functions are packaged in light-weight Docker containers to
(_Router) (_Manage)-. provide fast instantiation time, platform-independence, high throughput and low resource
I vt (_OpenDayight__] |} ytilisation for the system.
i \ SDN Controller !
OF SWITCH 1 | | OF SWITCH 3 ! . o
r& q + Transparent: Hosts need not to change their traffic's destination to use network
| i functions, as re-routing the traffic is handled entirely by the network without modifying
M ;3] . packet headers.
[VM] [Docker] [Agent H----'
(vm] (Linux)) _ _
| Serven GLANF Server Infrastructure independent: Traffic routing for NFs is handled separately from the DCs

generic routing policies, allowing forwarding of traffic from any host to ephemeral NFs in

NnAanClawnr Aanahlad AnviirAanmAantes

http://glanf.dcs.gla.ac.uk

ank you for your attention!

Container-Based Network Function Virtualization
for Software-Defined Networks

Richard Cziva, Simon Jouet, Kyle J. S. White and Dimitrios P. Pezaros
School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland
{rcziva.l, sjouet.1, k.white.3} @research.gla.ac.uk, dimitrios.pezaros @glasgow.ac.uk

http://glanf.dcs.gla.ac.uk

Abstract—Today’s enterprise networks almost ubiquitously
deploy middlebox services to improve in-network security and
performance. Although virtualization of middleboxes attracts a
significant attention, studies show that such implementations
are still proprietary and deployed in a static manner at the
boundaries of organisations, hindering open innovation.

In this paper, we present an open framework to create, deploy
and manage virtual Network Functions (NF)s in OpenFlow-
enabled networks. We exploit container-based NFs to achieve
low performance overhead, fast deployment and high reusabil-
ity missing from today’s NFV deployments. Through an SDN
northbound API, NFs can be instantiated, traffic can be steered
through the desired policy chain and applications can raise
notifications. We demonstrate the systems operation through the
development of exemplar NFs from common Operating System
utility binaries, and we show that container-based NFV improves
function instantiation time by up to 68 % over existing hypervisor-
based alternatives, and scales to one hundred chained NFs while
incurring sub-millisecond latency.

I. INTRODUCTION

Enterprise networks rely on a wide spectrum of hardware-
based network appliances or ‘middleboxes’ to transform, in-
spect, filter or otherwise manipulate network traffic on top of
packet forwarding. In recent years, middleboxes have become

W DR T Y

2 1 a1 Y1

current NFV deployments by large ISPs and DC network op-
erators suffer from the statically-configured underlying routing
mechanisms in place, which do not support open interfaces and
result in operator and environment-specific solutions in static
or semi-static environments [5]. For example, deploying one
or more network functions requires the update of all affected
switches’ routing tables to redirect traffic, therefore making it
impractical to deploy infrastructure-wide NFs. Consequently,
NFV systems exhibit poor component reuse, and are still
unable to fulfill dynamic, temporal traffic workloads in an
elastic manner [6] [7]. In such environments, there is no cross-
layer information exchange between the routing layer and the
network functions, which results in a limited view of the
network to each functional entity. We argue that improvements
in NFV can be achieved by synergistic management and
optimisation of NFs and end-to-end routing between hosts and
NFs.

At the same time, Software-Defined Networking (SDN)
has emerged to logically centralise the network’s control
plane with OpenFlow as the main SDN protocol imple-
mentation [8] [9]. SDN is penetrating in highly dynamic
environments such as Cloud Data Centers (DCs), mainly

R T T T . B T I Y

