
Towards In-Switch Reinforcement Learning

Kyle A. Simpson
� k.simpson.1@research.gla.ac.uk
� FelixMcFelix � https://mcfelix.me

2nd December, 2020

University of Glasgow

1/14

mailto:k.simpson.1@research.gla.ac.uk
https://github.com/felixmcfelix
https://mcfelix.me


Data-driven networking: RL in networks

Data-driven networking: Automate control, optimisation, configuration of the
network.

• Flow performance optimisation.
• Resource allocation.
• Adaptive response to load, intrusions, etc.
• Feedback loop-like.

2/14



Why programmable data-planes?

Theory
S

S′

Agent

Action A

+R

A

Reality
S

S′

S′′

Agent

Action A

+R

∅

A

t1

t2

t3

Figure 1: Asynchronous RL delays and state slippage
(policy updates omitted).

• In data-driven, want to
minimise time to act.
• RL assumes that action &
policy update are zero-cost.

• Not so in real
deployments!
• State drift, etc.

• Controller contact time,
serialisation, ...
• In other ML, often need
line rate inference.
• Programmable network
hardware fills this niche. 3/14



Recent Programmable Trends in Data-Driven Networks

• ML acceleration, line-rate packet
classification.
• How? Train model off-NIC, convert to binary
neural network1, or decision tree2.
• Limits? No online training, cost of backprop
algo (expensive!), vast data needs.
• What if we need online learning?

1Siracusano et al., ‘Running Neural Networks on the NIC’.
2Xiong and Zilberman, ‘Do Switches Dream of Machine Learning?: Toward In-Network
Classification’.

4/14



Case study: DDoS Prevention

Agent 1
s0

s1

Agent 2

Agent 3

Us0

Us1

Figure 2: ‘Global’ state for any flow
(bold means used by policy).

• Prior work3.
• Monitor flow statistics at ingress/egress
points.
• Use load measurements from flow paths as
global state.
• OUTPUT: throttle individual flows.
• Classical RL.

• Learning time on order of minutes.

3Simpson, Rogers and Pezaros, ‘Per-Host DDoS Mitigation by Direct-Control Reinforcement
Learning’.

5/14



Case Study: DDoS Prevention (Architecture)

• Reward
measurements
come from network.
• Input state mixes
local flow data with
global load data.
• Flow
measurements
combined,
decisions
scheduled to
prevent overload.

Remote

Switch
Load

Collector

Egress Switch
Load

Collector
Estimator
g(·)

Agent vNF

Stats API

Local
Agent Switch

OpenFlow
Tables

Stats
Collector

Load
Collector

Agent vNF
Stats API

Flowstate
Database

TRS
Scheduler

Core RL

Current load

Flow s
tats

Current load

Current load
Estim

ation
data

Ex
pe
rie
nc
e

St
at
e

Live
flows

Packet drop rules

State W
or
k

Actions

State

Experience

Figure 3: (Non-PDP) system architecture for RL-driven DDoS
defence.

6/14



Goals... and Reality

Goal Solution Drawback

• On-NIC action compute Quantisation Platform Model
• On-NIC learning Classical RL Info capacity

• Direct action installation Custom actions No intrinsic support
• (Partly) External State, Rewards, Independent Module —

and Task Independence
• Runtime reconfiguration P4 Parser + RTE —

7/14



Device classes

SmartNICs (e.g., Netronome)
• Low port density.
• Easy to have asynchrony:
• SOC-based→ extra cores off the
datapath.
• NetFPGA→ can define extra
functional units and interconnect.

Programmable Switches (e.g., Tofino)
• High port density.
• No additional compute units. Very
close to P4 PSA.
• But still more powerful–e.g., Tofino
supports MUL operations.
• Might be doable... deadline-aware.

We’ll mainly focus on SmartNICs.

8/14



Architecting On-NIC RL

P4 Datapath

Flow Control Rules

Extern-based
Action
...

Control
Packet
Match
...

Network Telemetry

Packet In

Packet Out

RL Island
EMEM
Input Queue Control ME

EMEM
Action Queue

CLS
Policy

CTM
EMEM

T1

T2

T3

Policy ME

Policy ME

Policy ME

Contr
ol, Re

quest
s

Sta
te

Ac
tio
ns

Actions

NN

NN
NN NN

Figure 4: Architecture for generalised RL agent on
Netronome hardware.

• Classical RL built on
tile-coding—online.
• Async wrt. datapath.
• Dynamic selection of last
reward, trace info.
• Runtime configurable
(policy, size, application)
from data/control-plane.
• Task independent.

9/14



How could this (hypothetically) fit the case study?

• P4 table-action to gather state on collected flows.
• Flow telemetry in P4 well-documented.
• Pass in/schedule state vectors every δt.

• Directly pass reward measurements to RL core.
• Base policy installed by controller, updated live.
• Matched packets poll actions from RL core.

• Map RL actions to state machine, maintain throttling hash table.
• Every δt′, batch actions to controller.

10/14



Timing: Why not offload to the controller?

For SmartNICs, the attached host is the
(closest) controller.

• PCIe access times O(µs).4

• MATs recompiled O(s). Many rules
=⇒ batching.
• Thrift serde time O(ms).

Meanwhile core-to-core on chip around
100ns @ 1.2 GHz.

0

500

1000

1500

2000

2500

3000

3500

1 10 100 1000 10000

Ti
m
e
(m

s)

Rule Count

Figure 5: Netronome rule installation cost
(1 table, 1–65 536 rules).

4Neugebauer et al., ‘Understanding PCIe performance for end host networking’.

11/14



Quantisation

0.75

0.8

0.85

0.9

0.95

1

1.05

0 5 10 15 20 25 30 35

A
cc
ur
ac
y
vs

Fl
oa
t3
2

Qn

Figure 6: DDoS throttle accuracy wrt.
fixed-point Qn.

No FPU... so use Qn fixed-point.
• For RL updates: need only shift,
multiply, add.
• Policy exec only needs add.
• 16 bit fraction has negligible loss.

12/14



Dynamic Action Installation

• Netronome w/ P4?
• MAT structure (DCFL) computed on host...
• So can’t directly interop with P4.
• ...But we can have other actions/externs maintain their own lookup tables.

• Tofino has features to make this more feasible.
• Action Profiles/Selects

13/14



Execution costs (Q15.16)

• Single-threaded—still to be
accelerated.
• Small? One tiling per
memory tier.
• Max? 20-element state, 17
mixed-dim tilings, 8 per set.
• Versus use-case: 330 µs on
commodity i7 (4.2 GHz).

Policy Size Action (µs) Plus Update (µs)

Small 10.66 14.60
Max (DDoS) 512.67 612.55

14/14



Takeaways:

• Online in-NIC RL is possible!
• In-switch? Less so.
• Platform-specific, but similar design for SmartNIC
hardware class.
• Work-in-progress: end-to-end timing, training accuracy,
other use-cases (AQM?), optimisation.

Questions?

14/14


