Towards In-Switch Reinforcement Learning

Kyle A. Simpson
S k.simpson.laresearch.gla.ac.uk
O FelixMcFelix @ https://mcfelix.me

2"d December, 2020

University of Glasgow

114

mailto:k.simpson.1@research.gla.ac.uk
https://github.com/felixmcfelix
https://mcfelix.me

Data-driven networking: RL in networks

Data-driven networking: Automate control, optimisation, configuration of the
network.

- Flow performance optimisation.
- Resource allocation.
- Adaptive response to load, intrusions, etc.

- Feedback loop-like.

2/14

Why programmable data-planes?

- In data-driven, want to
minimise time to act.

Theory Reallty - RL assumes that action &
t policy update are zero-cost.
» Agent » Agent ‘
It - Not so in real
o - g deployments!
A Action A ~Action A ptoyments:
't3 - State drift, etc.
+R A - Controller contact time,
serialisation, ...
+R
- In other ML, often need
Figure 1: Asynchronous RL delays and state slippage line rate inference.
(policy updates omitted,). - Programmable network

hardware fills this niche. 3/

Recent Programmable Trends in Data-Driven Networks

- ML acceleration, line-rate packet
classification.

- How? Train model off-NIC, convert to binary
neural network?, or decision tree?2.

- Limits? No online training, cost of backprop
algo (expensive!), vast data needs.

- What if we need online learning? pe e
L
[

'Siracusano et al., ‘Running Neural Networks on the NIC'.
ZXiong and Zilberman, ‘Do Switches Dream of Machine Learning?: Toward In-Network
Classification’.

414

Case study: DDoS Prevention

- Prior work3.
Agent 2 . L .
so - Monitor flow statistics at ingress/egress

Agent 1 u]
gg_o/o\o > points.

Us - Use load measurements from flow paths as
Agent 3 global state.
Figure 2: ‘Global’ state for any flow - QUTPUT: throttle individual flows.
(bold means used by policy). . Classical RL.

- Learning time on order of minutes.

3Simpson, Rogers and Pezaros, ‘Per-Host DDoS Mitigation by Direct-Control Reinforcement
Learning'.

5/14

Case Study: DDoS Prevention (Architecture)

- Reward
measurements
come from network.

- Input state mixes
local flow data with
global load data.

- Flow
measurements
combined,
decisions
scheduled to
prevent overload.

Remote

Switch Egress Switch Agent VNF

Collector ’

Estimator

9()

Load
Collector

OpenFlow
Tables j«|

Local
Agent Switch

Stats API

=
Collector %

%

Stats ¢

Collector RS
Scheduler

Figure 3: (Non-PDP) system architecture for RL-driven DDoS
defence.

6/14

Goals... and Reality

Goal Solution Drawback
e On-NIC action compute Quantisation Platform Model
e On-NIC learning Classical RL Info capacity
e Direct action installation Custom actions No intrinsic support

e (Partly) External State, Rewards, Independent Module —
and Task Independence
e Runtime reconfiguration P4 Parser + RTE —

7/14

Device classes

SmartNICs (e.g., Netronome) Programmable Switches (e.g., Tofino)
- Low port density. - High port density.
- Easy to have asynchrony: - No additional compute units. Very

- SOC-based — extra cores off the close to P4 PSA.
datapath. - But still more powerful-e.g., Tofino

- NetFPGA — can define extra supports MUL operations.

functional units and interconnect. - Might be doable... deadline-aware.

We'll mainly focus on SmartNICs.

8/14

Architecting On-NIC RL

Packet In
P4 Datapath EMEM) .
o gcuonQucug - Classical RL built on
m L tile-coding—online.
ction
s Input Queue K- Control ME J—
E]. A W - Async wrt. datapath.
Packet o Policy. . I |
= ids T Dynamic selection of last
gon s reward, trace info.
(ot oy sene] '
T - Runtime configurable
Packet Out
(policy, size, application)
from data/control-plane.
Figure 4: Architecture for generalised RL agent on - Task independent.

Netronome hardware.

9/14

How could this (hypothetically) fit the case study?

- P4 table-action to gather state on collected flows.

- Flow telemetry in P4 well-documented.
- Pass in/schedule state vectors every §t.

- Directly pass reward measurements to RL core.
- Base policy installed by controller, updated live.

- Matched packets poll actions from RL core.

- Map RL actions to state machine, maintain throttling hash table.
- Every 6t’, batch actions to controller.

10/14

Timing: Why not offload to the controller?

3500

For SmartNICs, the attached host is the

3000

(closest) controller. 2500
- PCle access times O(us).* E 2000
- MATs recompiled O(s). Many rules : jo:Z :
— batching. 500 B
- Thrift serde time O(ms). 0 1_11101 100)1:01 mluoo

Rule Count

Meanwhile core-to-core on chip around
100 ns @ 1.2 GHz. Figure 5: Netronome rule installation cost
(1 table, 1-65 536 rules).

“Neugebauer et al., ‘Understanding PCle performance for end host networking'.

1/14

No FPU... so use Qn fixed-point.

- For RL updates: need only shift,
multiply, add.

Accuracy vs Float32

. - Policy exec only needs add.
o - 16 bit fraction has negligible loss.

Figure 6: DDoS throttle accuracy wrt.
fixed-point Qn.

12/14

Dynamic Action Installation

- Netronome w/ P4?

- MAT structure (DCFL) computed on host...
- So can't directly interop with P&4.
- ...But we can have other actions/externs maintain their own lookup tables.

- Tofino has features to make this more feasible.
- Action Profiles/Selects

13/14

Execution costs (Q15.16)

- Single-threaded—still to be
accelerated.

- Small? One tiling per Policy Size Action (ps) Plus Update (us)
memory tier.

Small 10.66 14.60

- Max? 20-element state, 17 Max (DDOS) 51267 612.55

mixed-dim tilings, 8 per set.

- Versus use-case: 330 s on
commodity i7 (4.2 GHz).

14/14

Takeaways:

Online in-NIC RL is possible!
In-switch? Less so.

Platform-specific, but similar design for SmartNIC
hardware class.

Work-in-progress: end-to-end timing, training accuracy,
other use-cases (AQM?), optimisation.

Questions?

