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Data-driven networking: RL in networks

Data-driven networking: Automate control, optimisation, configuration of the
network.

• Flow performance optimisation.
• Resource allocation.
• Adaptive response to load, intrusions, etc.
• Feedback loop-like.
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Why programmable data-planes?
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Figure 1: Asynchronous RL delays and state slippage
(policy updates omitted).

• In data-driven, want to
minimise time to act.
• RL assumes that action &
policy update are zero-cost.

• Not so in real
deployments!
• State drift, etc.

• Controller contact time,
serialisation, ...
• In other ML, often need
line rate inference.
• Programmable network
hardware fills this niche. 3/14



Recent Programmable Trends in Data-Driven Networks

• ML acceleration, line-rate packet
classification.
• How? Train model off-NIC, convert to binary
neural network1, or decision tree2.
• Limits? No online training, cost of backprop
algo (expensive!), vast data needs.
• What if we need online learning?

1Siracusano et al., ‘Running Neural Networks on the NIC’.
2Xiong and Zilberman, ‘Do Switches Dream of Machine Learning?: Toward In-Network
Classification’.
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Case study: DDoS Prevention
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Figure 2: ‘Global’ state for any flow
(bold means used by policy).

• Prior work3.
• Monitor flow statistics at ingress/egress
points.
• Use load measurements from flow paths as
global state.
• OUTPUT: throttle individual flows.
• Classical RL.

• Learning time on order of minutes.

3Simpson, Rogers and Pezaros, ‘Per-Host DDoS Mitigation by Direct-Control Reinforcement
Learning’.
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Case Study: DDoS Prevention (Architecture)

• Reward
measurements
come from network.
• Input state mixes
local flow data with
global load data.
• Flow
measurements
combined,
decisions
scheduled to
prevent overload.
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Figure 3: (Non-PDP) system architecture for RL-driven DDoS
defence.
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Goals... and Reality

Goal Solution Drawback

• On-NIC action compute Quantisation Platform Model
• On-NIC learning Classical RL Info capacity

• Direct action installation Custom actions No intrinsic support
• (Partly) External State, Rewards, Independent Module —

and Task Independence
• Runtime reconfiguration P4 Parser + RTE —
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Device classes

SmartNICs (e.g., Netronome)
• Low port density.
• Easy to have asynchrony:
• SOC-based→ extra cores off the
datapath.
• NetFPGA→ can define extra
functional units and interconnect.

Programmable Switches (e.g., Tofino)
• High port density.
• No additional compute units. Very
close to P4 PSA.
• But still more powerful–e.g., Tofino
supports MUL operations.
• Might be doable... deadline-aware.

We’ll mainly focus on SmartNICs.
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Architecting On-NIC RL
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Figure 4: Architecture for generalised RL agent on
Netronome hardware.

• Classical RL built on
tile-coding—online.
• Async wrt. datapath.
• Dynamic selection of last
reward, trace info.
• Runtime configurable
(policy, size, application)
from data/control-plane.
• Task independent.
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How could this (hypothetically) fit the case study?

• P4 table-action to gather state on collected flows.
• Flow telemetry in P4 well-documented.
• Pass in/schedule state vectors every δt.

• Directly pass reward measurements to RL core.
• Base policy installed by controller, updated live.
• Matched packets poll actions from RL core.

• Map RL actions to state machine, maintain throttling hash table.
• Every δt′, batch actions to controller.
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Timing: Why not offload to the controller?

For SmartNICs, the attached host is the
(closest) controller.

• PCIe access times O(µs).4

• MATs recompiled O(s). Many rules
=⇒ batching.
• Thrift serde time O(ms).

Meanwhile core-to-core on chip around
100ns @ 1.2 GHz.
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Figure 5: Netronome rule installation cost
(1 table, 1–65 536 rules).

4Neugebauer et al., ‘Understanding PCIe performance for end host networking’.

11/14



Quantisation
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Figure 6: DDoS throttle accuracy wrt.
fixed-point Qn.

No FPU... so use Qn fixed-point.
• For RL updates: need only shift,
multiply, add.
• Policy exec only needs add.
• 16 bit fraction has negligible loss.
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Dynamic Action Installation

• Netronome w/ P4?
• MAT structure (DCFL) computed on host...
• So can’t directly interop with P4.
• ...But we can have other actions/externs maintain their own lookup tables.

• Tofino has features to make this more feasible.
• Action Profiles/Selects
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Execution costs (Q15.16)

• Single-threaded—still to be
accelerated.
• Small? One tiling per
memory tier.
• Max? 20-element state, 17
mixed-dim tilings, 8 per set.
• Versus use-case: 330 µs on
commodity i7 (4.2 GHz).

Policy Size Action (µs) Plus Update (µs)

Small 10.66 14.60
Max (DDoS) 512.67 612.55
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Takeaways:

• Online in-NIC RL is possible!
• In-switch? Less so.
• Platform-specific, but similar design for SmartNIC
hardware class.
• Work-in-progress: end-to-end timing, training accuracy,
other use-cases (AQM?), optimisation.

Questions?
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