Revisiting the Classics: Online RL in the Programmable Dataplane

4th June, 2021

University of Glasgow

Data-driven networking: Automate control, optimisation, configuration of the network.

- Flow performance optimisation.
- Resource allocation.
- Adaptive response to load, intrusions, etc.
- Feedback loop-like.

Why programmable data-planes?

Figure 1: Asynchronous RL delays and state slippage (policy updates omitted).

- In data-driven, want to minimise time to act.
- RL assumes that action & policy update are zero-cost.
 - Not so in real deployments!
 - State drift, etc.
- Controller contact time, serialisation, ...
- In other ML, often need line rate inference.
- Programmable network hardware fills this niche. 3/23

Recent Programmable Trends in Data-Driven Networks

- ML acceleration, line-rate packet classification.
- How? Train model off-NIC, convert to binary neural network¹, or decision tree².
- Limits? No online training, cost of backprop algo (expensive!), vast data needs.
- What if we need online learning?

¹Siracusano *et al.*, 'Running Neural Networks on the NIC'.

²Xiong and Zilberman, 'Do Switches Dream of Machine Learning?: Toward In-Network Classification'.

Timing: Why not offload to the controller?

For SmartNICs, the attached host is the (closest) controller.

- PCIe access times $\mathcal{O}(\mu s)^3$
- \cdot Crossing VMs/vNFS has ${\sim}10 \times $\rm higher\ cost^4$$
- MATs recompiled $\mathcal{O}(s)$. Many rules \implies batching.

Meanwhile core-to-core on NFP around 140 ns @ 1.2 GHz.

Figure 2: Netronome rule installation cost (1 table, 1–65 536 rules).

³Neugebauer *et al.*, 'Understanding PCIe performance for end host networking'. ⁴Cziva and Pezaros, 'Container Network Functions: Bringing NFV to the Network Edge'.

How do we bring online, in-NIC RL?

Device Cores/Area allocated to P4

Spare Device Cores/Area

- Classical RL built on tile-coding—online.
- Fixed-point arithmetic.
- Async wrt. datapath.
- Dynamic selection of last reward, trace info.
- Runtime configurable (policy, size, application) from data/control-plane. Task independent.

Background and Design

A simple explanation:

How to select an action? Pick largest from list: $\hat{q}(S_t, \cdot, w_t)$

How should we adjust the value of selected items?

New target value:
Reward+some of the next action's value

$$\delta_t = \overbrace{R_{t+1} + \gamma \, \hat{\mathbf{q}}(S_{t+1}, A_{t+1}, \mathbf{w}_t)}^{\text{New target value:}} - \underbrace{\hat{\mathbf{q}}(S_t, A_t, \mathbf{w}_t)}_{\hat{\mathbf{q}}(S_t, A_t, \mathbf{w}_t)},$$

Current value estimate

Policy parameter update:

Move a little bit of
$$\delta_t$$
 along...
 $\mathbf{W}_{t+1} = \mathbf{W}_t + \overbrace{\alpha \delta_t}^{\infty} \underbrace{\nabla \hat{\mathbf{q}}(S_t, A_t, \mathbf{W}_t)}_{\text{...the policy's gradient}}.$

Design implications?

Tile Coding

Tile Coding (ii)

- · Operations? +, -, ×, ÷
 - PoT tile width? ÷ replaced w/ shift.
- Tiling set: identical dimensions, different shifts
- Gradient for RL?
 - List of hit tiles.
- Can be more complex...

Tile Coding: Parallelism

Tile Coding: Parallelism (ii)

Designs: How to exploit on-NIC parallelism?

- Netronome SmartNICs very multi-core (NFP-6480).
 - NetFPGAs also allow creating separate, effectively async functional units.
- Two ways to take advantage:
 - Available threads process *Ind*ependently.
 - Available threads CoOperate on each inference or learning task.
- Basic algorithm:
 - (Parallel) action compute.
 - Output action.
 - Check for trace in progress for this input.
 - If found: compute δ , do (parallel) policy update.

Designs: Ind (on NFP)

13/23

Designs: CoOp (on NFP)

14/23

Evaluation

Versus commodity hosts...

- State-Action/Update latency
- Online/Offline throughput
- Impact on cross-traffic
- $\cdot\,$ Device resource use

On large-ish policies (20D state, 10 actions, bias+(7×1D, 8×2D, 1×4D)).

Datatype	Machine/FW	State-Action Latency (µs)			State-Update Time (µs)			
		Median	99 th	99.99 th	Median	99 th	99.99 th	
Float	Collector	515.94	606.06	725.03	606.06	636.82	833.99	
	MidServer	1069.07	1 125.1	1508.0	1260.04	1605.99	1719.864	
Int32	OPaL-Ind	185.133	185.533	186.213	230.840	231.347	232.227	
	OPaL- <i>CoOp</i>	34.347	34.520	34.573	62.000	62.440	63.120	

Lower latency with just one (slower) core.

One NFP island \implies 15 \times median S \rightarrow A speedup.

Far tighter tail than host offload!

Latency-Bit Depth

Figure 3: OPaL action and update latencies based on work size (crossover at 3-dim, 10-dim).

Latency—Core Count

Figure 4: OPaL action and update latencies based on worker count (crossover at 3-core, 8-core).

Examining Tail Latencies

Figure 5: Cumulative state-action latency plots for OPaL and host-based execution.

Datatype	Machine/FW	Workers	Throughput (< actions/s)	Throughput/core (k actions/s)	
			Offline	Online	Offline	Online
Float	Collector	4	7.673(49)	1.627(31)	1.918(12)	_
	MidServer	6	5.584(30)	0.791(12)	0.931(5)	—
Int32	OPaL-Ind	32	172.875(229)	4.333(5)	5.402(7)	—
	OPaL- <i>CoOp</i>	32	29.166(173)	16.141(73)	0.911(5)	0.504(2)

In-NIC and quantised offers higher throughput per core.

Parallel Sarsa key to maximising online throughput.

Impact on cross-traffic

(a) Deviations in 99th percentile RTTs.

(b) 128 B *outlier* (99th+222 ns)

Figure 6: Effects on tail latency of cross-traffic-typically sub-78 ns.

Firmware	EMEM		EMEM Cache		IMEM		i5.CLS		i5.CTM	
	MiB	%	KiB	%	KiB	%	KiB	%	KiB	%
Base P4	6776.67	88.24	268.52	2.91	858.28	10.48	0.00	0.00	0.00	0.00
Ind(1)	6780.21	88.28	2 541.08	27.57	1263.28	15.42	24.75	38.67	94.25	36.82
Ind(4)	6780.22	88.28	2 545.33	27.62	1263.28	15.42	51.18	79.97	107.00	41.80
CoOp(1)	6779.12	88.27	1773.59	19.24	1263.28	15.42	22.41	35.01	90.00	35.16
<i>CoOp</i> (4)	6779.12	88.27	1769.84	19.20	1263.28	15.42	52.16	81.49	90.00	35.16

- Ind: 27 µs
- *CoOp*: 54–238 µs
- New policy data? Just memcopies.
- Only design, bit depth, max policy sizes need recompile.
- Can mix and match agent types in the network, export learned policy over control plane.

Takeaways:

Online in-NIC RL is possible! Order-of-magnitude latency improvement over offloading, higher online throughput. Platform-specific, but similar design for SmartNIC hardware class. Future work: use-cases (AQM, DDoS prevention & accuracy), NetFPGA, transfer learning.

Questions?

⊡ k.simpson.1@research.gla.ac.uk **○** FelixMcFelix **●** https://mcfelix.me

Scheduler performance

Figure 7: Action/update compute times in a 32 bit CoOp agent under different work schedulers.

Per-worker throughput

Figure 8: Throughput per added worker in a CoOp agent.

Datatype	Machine/FW	State-Action Latency (µs)			State-Update Time (µs)		
		Median	99 th	99.99 th	Median	99 th	99.99 th
Float	Collector	515.94	606.06	725.03	606.06	636.82	833.99
	MidServer	1069.07	1 125.1	1508.0	1260.04	1605.99	1719.864
Int32	OPaL-Ind	185.133	185.533	186.213	230.840	231.347	232.227
	OPaL- <i>CoOp</i>	34.347	34.520	34.573	62.000	62.440	63.120
Int16	OPaL-Ind	193.427	193.787	194.587	240.333	240.840	241.560
	OPaL- <i>CoOp</i>	36.147	36.240	36.280	64.667	65.080	65.973
Int8	OPaL-Ind	194.520	194.840	195.240	241.173	241.707	242.760
	OPaL-CoOp	36.227	36.307	36.347	64.333	64.867	65.693

Datatype	Machine/FW	Workers	Throughput (I	k actions/s)	Throughput/core (k actions/s)		
			Offline	Online	Offline	Online	
Float	Collector	4	7.673(49)	1.627(31)	1.918(12)	_	
	MidServer	6	5.584(30)	0.791(12)	0.931(5)	_	
Int32	OPaL-Ind	32	172.875(229)	4.333(5)	5.402(7)	_	
	OPaL- <i>CoOp</i>	32	29.166(173)	16.141(73)	0.911(5)	0.504(2)	
Int16	OPaL-Ind	32	165.437(118)	4.161(4)	5.170(4)	—	
	OPaL-CoOp	32	27.664(36)	15.471(54)	0.865(1)	0.483(2)	
Int8	OPaL-Ind	32	164.524(142)	4.147(5)	5.141(4)	—	
	OPaL-CoOp	32	27.631(101)	15.552(68)	0.863(3)	0.486(2)	

References i

 Cziva, Richard and Dimitrios P. Pezaros. 'Container Network Functions: Bringing NFV to the Network Edge'. In: IEEE Commun. Mag. 55.6 (2017), pp. 24–31. DOI: 10.1109/MCOM.2017.1601039. URL:

https://doi.org/10.1109/MCOM.2017.1601039.

Neugebauer, Rolf, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio López-Buedo and Andrew W. Moore. 'Understanding PCIe performance for end host networking'. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM 2018, Budapest, Hungary, August 20-25, 2018. Ed. by Sergey Gorinsky and János Tapolcai. ACM, 2018, pp. 327–341. DOI: 10.1145/3230543.3230560. URL: https://doi.org/10.1145/3230543.3230560.

References ii

- Siracusano, Giuseppe, Salvator Galea, Davide Sanvito,
 Mohammad Malekzadeh, Hamed Haddadi, Gianni Antichi and Roberto Bifulco.
 'Running Neural Networks on the NIC'. In: CoRR abs/2009.02353 (2020). arXiv: 2009.02353. URL: https://arxiv.org/abs/2009.02353.
- Xiong, Zhaoqi and Noa Zilberman. 'Do Switches Dream of Machine Learning?: Toward In-Network Classification'. In: Proceedings of the 18th ACM Workshop on Hot Topics in Networks, HotNets 2019, Princeton, NJ, USA, November 13-15, 2019. ACM, 2019, pp. 25–33. ISBN: 978-1-4503-7020-2. DOI: 10.1145/3365609.3365864. URL:

https://doi.org/10.1145/3365609.3365864.