L
bl
'

University NETLAB EPSRC

NETWORKED SYSTEMS RESEARCH LABORATORY Eng|neer|ng and Phys|cal Sc|ences
Research Council

Programmable Dataplane

THE NEXT STEP IN SDN 7

SIMON JOUET = SIMON.JOUET@GLASGOW.AC.UK

HTTP://NETLAB.DCS.GLA.AC.UK

mailto:simon.jouet@Glasgow.ac.uk
http://netlab.dcs.gla.ac.uk/

Motivation (I)

In only a few years OpenFlow revolutionised Networking
Decouple the control plane from the data plane

Centrally manage the control plane in software

Open the control logic to the users

o Just program you network behaviour in Java/Python ...

Abstract packet forwarding logic from particular hardware

o No more vendor lock-in, same software can be used on any OpenFlow switch
Access to network wide information

o Topology: links, switches, ports, bandwidth, latency ...
o Globally informed (possibly optimal) decision can be made

o

o

o

o

o

~16 900 publications in less than 8 years

o Traffic Engineering, Routing Protocols, Policy enforcement, Software Design,
Performance evaluation, Architecture verification, Debugging ...

Motivation (II)

OpenFlow just the first step in SDN
o OF was necessary to show the benefits SDN can provide

o However, limited functionality and purpose
o Limited set of fields to match on (3.6 times more fields in 1.5 than 1.0)
o What about new protocols? And custom protocols?
o What about inequality or range matching?
o What about statistics other than Packet, Byte count, Flow duration?
o What about stateful matching or forwarding logic?

o What about line-rate packet processing? Telemetry? Anomaly detection?

To achieve the next step in SDN we need data plane programmability

Motivation

OpenFlow 1.0

OpenFlow 1.5

i Port L1 i [Por L1
| I i | - Logicat Port D '
! Port ID ! \ | - Physical Port ID* !
L ' ! | - Metadata® '
: ¥ L2, - Tunnel ID* '
\ i ' ;
: [@Hﬂc i i IIIEtr'lernet Lz i
| - Source i '
| | - Destination MAC E OF Version Release | | - Destnation MAC !
- Typeﬂ_eng!h i . Type/l_en.grh !
| - vian D ! Date | S ViAN Prory !
! - VLAN Priority | \ | -PBBISID* !
| ! :
i i i ;
N e SR &3 1.0 Dec 2009 I S L
! i ARPT : I ! !
————————— | - Opcode '
: N a : ! - Sender Protocol Address !
: - Sender Protocol Address | 1.1 Feb 2011 15 15 320 | Iy Target Protocol Address |
[} - Target Protocol Address ! , | MPLST :
i - Label i
P[P | 1.2 Dec 2011 36 9—18 603 | | Itecomy |
| - Source Address | 13 Jun 2012 40 9—22 701 [(wai] Twe]
' | - Destination Adaress ! | -EcN® - ECN" !
T P L4, 1.4 Oct 2013 41 9—23 709 | oo | S |
' __uor | ! . | | -Deotinaton Acdress| - Dostinaln Addross |
i i - |
: - Source Port ! | “Extonsion Header" |
! - Destination Port ! 1.5 Dec 2014 44 10 — 26 773 TN]
| = ’ =, |
! - Source Port | ! | - Dostination Port i
) - Destination Port i i R TCP !
e ; | |
N | 5 |
. ! | :

Challenges

HOW STANDARDS PROUFERATE:
(466 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

M?! RIDICULOUS!

WE NEED To DEVELOP
SITUATION: ?.H"Er% o Eﬂgm‘lﬂ' "o || SITUATON:
THERE ARE USE CASES. yepun THERE ARE

4 COMPETING \) 5 COMPETING
https://xkcd.com/927/

Challenges

Goal:
° Program the data plane to achieve arbitrary matching and processing
o Not limited to the fields, action, and processing OpenFlow provide
o Do not rely on yearly protocol specification update for new features
° Protocol Independence
o No knowledge of Ethernet, TCP, UDP ...
o Work with existing and future protocols

o Target Independence
o No specific target hardware

° Line-rate processing

Do not try to support every existing protocol header fields:
° Provide an instruction set suitable to match arbitrary protocols and fields

o Execution of the instruction set is an implementation detail
o Interpreter, Just-in-time compiler, FPGAs, ASICS, NPU ...

The BPF instruction set (I)

No point reinventing the wheel, 1992 McCane and Jacobson BPF
o Designed specifically for packet matching and processing
Designed as a platform (target) independent bytecode
Designed as a protocol independent instruction set
Widely used by the Linux kernel
Widely used by networking tools: TCPdump, Wireshark, libpcap, winpcap ...
Extended BPF (eBPF) + JIT added in Linux kernel 3.18

o

o

o

[e]

o

jf 10

Match
* |Pv4 packets
* Not port 22

if 9

The BPF instruction set (Il)

Represent the BPF code as a tree:
o — jt (jump if condition is true)

o — jf (jump if condition is false)

0 1 2 3
0 1 2 3 45 6 7 8 9101112 13 14 15/16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31
Ethernet

0 O Destination

4 32

8 64 Ethernet Source

12 96 Ethernet Type Version | Hdr Length | Service Type
16 128 Total Length Identification
20 160| Flags Fragement Offset Time To Live (TTL) | Protocol
24 192 Header Checksum Source Address
28 224 Destination Address
32 256 IP Options ...

1dh [12]

jeq #0x800

) Y
Idb [23]

jeq #0x6

) ¥
Idh [20]
\ jset #Ox1fff

4 + ™
ldxb 4*([14]80xf)

v

Idh [x + 14]

Ethernet + IPv4 Headers

_jeq #0x16

L
(e D (

Acyclic Flow Graph Representation
of a BPF program

¥

miss)

The BPF instruction set (1)

One of requirement is line-rate processing
o BPF does not include backward jumps, the execution can only move forward

o The Control Flow Graph (CFG) is therefore acyclic (not Turing Complete)

Results in nice properties for High Performance Packet Processing
o CFG can be reordered to only parse each layer once
o Reduce the number of memory accesses, speed up the execution

° Nodes can be reordered to be executed in the order of the layers
o Pass-through switching: execute the BPF program as the packet is received

> Worst case execution time can be calculated
o Maximum program execution time is the time it take to execute longest path in the graph

o Can be mapped to a match+action pipeline

Achieve Platform/Protocol Independence and provide bound for realtime execution

Architecture

Intelligent vs Complex
o Example of “intelligence” is a learning switch
o Complex processing doesn’t imply “intelligence”

o The central controller provide the intelligence the nodes provide the
processing

o If you don’t know you ask the controller

Controller

Telemetry .

DDoS
Detection

Topology
Discovery

.

BPE OpenFlow?

Bytecode

Implementation

Proof of concept software-switch implementation
o Less than 500 lines of Go code
o Simple packet forwarding between NICs
o Use BPF return code as the output port : :
o Complete BPF bytecode interpreter B A
o 50 instructions, 2 registers, scratch memory e

o We should release the code “soon”

T T o

Working on a NetFPGA 10G implementation
o Show that line-rate (10G) can be achieved

o Evaluate the hardware complexity

o Number of FPGA slices and macro cells

Example 1 - Forwarding

A really stupid switch Switch
o If input_port is 1 send packet to port 2

portl port2

o Else send packet to port 1

(e1) {bpf.BPF_LD | bpf.BPF_ABS | bpf.BPF_W, @, @, @}, // load the in_port
(02) {bpf.BPF_JIMP | bpf.BPF_JEQ | bpf.BPF K, @, 1, 1}, // if in_port != 1 goto (04)
(03) {bpf.BPF_RET, 0, 0, 2}, // output to port 2
(04) {bpf.BPF_RET, 0, 0, 1}, // output to port 1

Example 2 - Telemetry

Alert controller on high buffer occupancy
o Check the buffer occupancy (0)
o Alert controller if buffer occupancy > 100
0

| — (T
IER I
Controller

{ bpf.BPF_LD | bpf.BPF_MEM, 0, 0, 0x20 } // Load current buffer occupancy
{ bpf.BPF_JMP | bpf.BPF_JGT | bpf.BPF_K, @, 1, 100} // if accumulator > 100
{ bpf.BPF_RET, @, 0, oxffff } // Alert the controller

// Jump here if buffer occupancy < 100

Example 3 — Anomaly Detection

SYN/FIN Denial of Service Anomaly Detection (21 instructions)
o Keep track of the number of packet with TCP SYN or FIN flag set

o If #SYN > 3*#FIN, alert the controller

// Check if it's an IP packet
{bpf.BPF_LD | bpf.BPF_ABS | bpf.BPF_H, 0, 0, 16},

// Load the ether.type

{bpf.BPF_IMP | bpf.BPF_JEQ | bpf.BPF_K, @, 20, 0x800}, // Check if IPv4

// Check if it's a TCP packet
{bpf.BPF_LD | bpf.BPF_ABS | bpf.BPF_B, 0, @, 27},

{bpf.BPF_IMP | bpf.BPF_JEQ | bpf.BPF_K, 0, 18, 0x06},

// Checks that the IP fragment offset is © so we are sure that we have a TCP header

{bpf.BPF_LD | bpf.BPF_ABS | bpf.BPF_H, 0, 0, 24},

{bpf.BPF_JIMP | bpf.BPF_JSET | bpf.BPF_K, 16, @, oxifff}, // If ip.offset is not @ return

// Load the ip.protocol
// Check if TCP

// Load the ip.offset

// Get the length of the IP header into the index register

{bpf.BPF_LDX | bpf.BPF_B | bpf.BPF_MSH, ©, @, 18},

// Check the state of the TCP flags
{bpf.BPF_LD | bpf.BPF_IND | bpf.BPF_ B, @, @, 4 + 14 + 13}, // Load tcp.flags

// ip.header_length, multiply it by 4

// If SYN is set, increment the counter, mem[O]++
{bpf.BPF_LD | bpf.BPF_MEM, @, @, @},

{bpf.BPF_ALU | bpf.BPF_ADD | bpf.BPF_K, @, 0, 1},
{bpf.BPF_ST | bpf.BPF_MEM | bpf.BPF_W, @, @, 0},
{bpf.BPF_IMP | bpf.BPF_JA, 3, 0, 0},

// if FIN is set, increment the counter, mem[1]++
{bpf.BPF_LD | bpf.BPF_MEM, @, 0, 1},

{bpf.BPF_ALU | bpf.BPF_ADD | bpf.BPF_K, @, 0, 1},
{bpf.BPF_ST | bpf.BPF_MEM | bpf.BPF_W, @, 0, 1},

// if SYN count is more than 3 times greater than
{bpf.BPF_LD | bpf.BPF_MEM, @, 0, 0},

{bpf.BPF_ALU | bpf.BPF_DIV | bpf.BPF_K, @, 0, 3},
{bpf.BPF_LDX | bpf.BPF_MEM | bpf.BPF_W, @, 0, 1},
{bpf.BPF_IMP | bpf.BPF_JGT | bpf.BPF_X, 0, 1, @},

// Load memory @ (SYN c
// Increment the accumu
// Store the value from
// Go check if somethin

// Load memory 1 (FIN c
// Increment the accumu
// Store the value from

FIN count something is
// Load SYN count in ac
// divide SYN count by
// Load FIN count in in
// if #SYN/3 > #FIN

// Alert the controller
{bpf.BPF_RET, 0, 0, oxffff},

{bpf.BPF_IMP | bpf.BPF_JSET | bpf.BPF_K, 1, @, 0x@2},
{bpf.BPF_IMP | bpf.BPF_JSET | bpf.BPF_K, 4, 12, @xo1},

// Check tcp.flags.SYN
// Check if tcp.flags.FIN is set

GEANT Testbed Service

Could a next step be Data Plane programmability?

o Allow large scale forwarding, telemetry, anomaly detection experiments
o Can this provide some solution to the outstanding GTS problems?
o Use this approach for debugging, insert a BPF “probe”?

o How should that work in a multi-tenant network?
o Need to make sure no interference between tenants
° |solation is harder when you can do whatever you want with the cables ...

o What deployment steps could we envision?
1. Have a BPF Switch Resource Type to create a virtual network between nodes
2. Add NetFPGAs to the set of Resource Types of GTS
° When defining a GTS testbed topology provide the FPGA bitfile?
o Would allow large scale experiment on data plane processing
o Though are NetFPGA suitable for this ? (what about a bad flash?)

Future Work

A language to describe the functions
o Writing the “SYN/FIN” ratio module took couple of hours ...

o P4 is a perfect candidate (Sigcomm 2014)
o Currently working on a P4 to BPF compiler

o Was hoping to get it working before the workshop ... Lexer and Parser are done

Controller to Switch communication
° How do you send the BPF code to the switch?

° What do you send, the full program, just a diff of the update?
o Trade-off between switch complexity and data transferred

How to expose metadata
o Telemetry require buffer occupancy, current CPU load, memory utilisation ...
o Most sampling processes require an accurate timestamp
o Go for the microcontroller approach, memory map the metadata?

Questions?

SIMON.JOUET@GLASGOW.AC.UK

mailto:Simon.jouet@Glasgow.ac.uk

