
Programmable Dataplane
THE NEXT STEP IN SDN ?

S I M O N J O U E T – S I M O N . J O U E T @ G L A S G O W. A C . U K

H T T P : / / N E T L A B . D C S .G L A . A C . U K

GTS TECH+FUTURES WORKSHOP - SIMON JOUET

mailto:simon.jouet@Glasgow.ac.uk
http://netlab.dcs.gla.ac.uk/

Motivation (I)
In only a few years OpenFlow revolutionised Networking

◦ Decouple the control plane from the data plane

◦ Centrally manage the control plane in software

◦ Open the control logic to the users
◦ Just program you network behaviour in Java/Python …

◦ Abstract packet forwarding logic from particular hardware
◦ No more vendor lock-in, same software can be used on any OpenFlow switch

◦ Access to network wide information
◦ Topology: links, switches, ports, bandwidth, latency …

◦ Globally informed (possibly optimal) decision can be made

~16 900 publications in less than 8 years
◦ Traffic Engineering, Routing Protocols, Policy enforcement, Software Design,

Performance evaluation, Architecture verification, Debugging …

Motivation (II)

OpenFlow just the first step in SDN
◦ OF was necessary to show the benefits SDN can provide

◦ However, limited functionality and purpose
◦ Limited set of fields to match on (3.6 times more fields in 1.5 than 1.0)

◦ What about new protocols? And custom protocols?

◦ What about inequality or range matching?

◦ What about statistics other than Packet, Byte count, Flow duration?

◦ What about stateful matching or forwarding logic?

◦ What about line-rate packet processing? Telemetry? Anomaly detection?

To achieve the next step in SDN we need data plane programmability

Motivation (II)
OpenFlow 1.0 OpenFlow 1.5

OF Version Release

Date

Match

fields

Depth Size

1.0 Dec 2009 12 12 264

1.1 Feb 2011 15 15 320

1.2 Dec 2011 36 9— 18 603

1.3 Jun 2012 40 9— 22 701

1.4 Oct 2013 41 9— 23 709

1.5 Dec 2014 44 10 — 26 773

Challenges

https://xkcd.com/927/

Challenges

Goal:
◦ Program the data plane to achieve arbitrary matching and processing

◦ Not limited to the fields, action, and processing OpenFlow provide

◦ Do not rely on yearly protocol specification update for new features

◦ Protocol Independence
◦ No knowledge of Ethernet, TCP, UDP ...

◦ Work with existing and future protocols

◦ Target Independence
◦ No specific target hardware

◦ Line-rate processing

Do not try to support every existing protocol header fields:
◦ Provide an instruction set suitable to match arbitrary protocols and fields
◦ Execution of the instruction set is an implementation detail

◦ Interpreter, Just-in-time compiler, FPGAs, ASICS, NPU …

The BPF instruction set (I)

No point reinventing the wheel, 1992 McCane and Jacobson BPF
◦ Designed specifically for packet matching and processing

◦ Designed as a platform (target) independent bytecode

◦ Designed as a protocol independent instruction set

◦ Widely used by the Linux kernel

◦ Widely used by networking tools: TCPdump, Wireshark, libpcap, winpcap …

◦ Extended BPF (eBPF) + JIT added in Linux kernel 3.18

Match
• IPv4 packets
• Not port 22

The BPF instruction set (II)

Represent the BPF code as a tree:
◦ jt (jump if condition is true)

◦ jf (jump if condition is false)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0
Ethernet
Destination

4 32

8 64 Ethernet Source

12 96 Ethernet Type Version Hdr Length Service Type

16 128 Total Length Identification

20 160 Flags Fragement Offset Time To Live (TTL) Protocol

24 192 Header Checksum Source Address

28 224 Destination Address

32 256 IP Options …

Ethernet + IPv4 Headers
Acyclic Flow Graph Representation
of a BPF program

The BPF instruction set (III)

One of requirement is line-rate processing
◦ BPF does not include backward jumps, the execution can only move forward
◦ The Control Flow Graph (CFG) is therefore acyclic (not Turing Complete)

Results in nice properties for High Performance Packet Processing
◦ CFG can be reordered to only parse each layer once

◦ Reduce the number of memory accesses, speed up the execution

◦ Nodes can be reordered to be executed in the order of the layers
◦ Pass-through switching: execute the BPF program as the packet is received

◦ Worst case execution time can be calculated
◦ Maximum program execution time is the time it take to execute longest path in the graph

◦ Can be mapped to a match+action pipeline

Achieve Platform/Protocol Independence and provide bound for realtime execution

Architecture
Intelligent vs Complex

◦ Example of “intelligence” is a learning switch

◦ Complex processing doesn’t imply “intelligence”

◦ The central controller provide the intelligence the nodes provide the
processing
◦ If you don’t know you ask the controller

Controller

Forwarding

Topology
Discovery

Telemetry

DDoS
Detection BPF

Bytecode

OpenFlow?

Implementation

Proof of concept software-switch implementation
◦ Less than 500 lines of Go code

◦ Simple packet forwarding between NICs
◦ Use BPF return code as the output port

◦ Complete BPF bytecode interpreter
◦ 50 instructions, 2 registers, scratch memory

◦ We should release the code “soon”

Working on a NetFPGA 10G implementation
◦ Show that line-rate (10G) can be achieved

◦ Evaluate the hardware complexity
◦ Number of FPGA slices and macro cells

Example 1 - Forwarding
A really stupid switch

◦ If input_port is 1 send packet to port 2

◦ Else send packet to port 1

Switch

PC1 PC2

port1 port2

(01) {bpf.BPF_LD | bpf.BPF_ABS | bpf.BPF_W, 0, 0, 0}, // load the in_port
(02) {bpf.BPF_JMP | bpf.BPF_JEQ | bpf.BPF_K, 0, 1, 1}, // if in_port != 1 goto (04)
(03) {bpf.BPF_RET, 0, 0, 2}, // output to port 2
(04) {bpf.BPF_RET, 0, 0, 1}, // output to port 1

Example 2 - Telemetry
Alert controller on high buffer occupancy

◦ Check the buffer occupancy (θ)

◦ Alert controller if buffer occupancy > 100

{ bpf.BPF_LD | bpf.BPF_MEM, 0, 0, 0x20 } // Load current buffer occupancy
{ bpf.BPF_JMP | bpf.BPF_JGT | bpf.BPF_K, 0, 1, 100} // if accumulator > 100
{ bpf.BPF_RET, 0, 0, 0xffff } // Alert the controller

// Jump here if buffer occupancy < 100

Forward

Alert
Controller

θ

Example 3 – Anomaly Detection

SYN/FIN Denial of Service Anomaly Detection (21 instructions)
◦ Keep track of the number of packet with TCP SYN or FIN flag set

◦ If #SYN > 3*#FIN, alert the controller

// Check if it's an IP packet
{bpf.BPF_LD | bpf.BPF_ABS | bpf.BPF_H, 0, 0, 16}, // Load the ether.type
{bpf.BPF_JMP | bpf.BPF_JEQ | bpf.BPF_K, 0, 20, 0x800}, // Check if IPv4

// Check if it's a TCP packet
{bpf.BPF_LD | bpf.BPF_ABS | bpf.BPF_B, 0, 0, 27}, // Load the ip.protocol
{bpf.BPF_JMP | bpf.BPF_JEQ | bpf.BPF_K, 0, 18, 0x06}, // Check if TCP

// Checks that the IP fragment offset is 0 so we are sure that we have a TCP header
{bpf.BPF_LD | bpf.BPF_ABS | bpf.BPF_H, 0, 0, 24}, // Load the ip.offset
{bpf.BPF_JMP | bpf.BPF_JSET | bpf.BPF_K, 16, 0, 0x1fff}, // If ip.offset is not 0 return

// Get the length of the IP header into the index register
{bpf.BPF_LDX | bpf.BPF_B | bpf.BPF_MSH, 0, 0, 18}, // ip.header_length, multiply it by 4

// Check the state of the TCP flags
{bpf.BPF_LD | bpf.BPF_IND | bpf.BPF_B, 0, 0, 4 + 14 + 13}, // Load tcp.flags
{bpf.BPF_JMP | bpf.BPF_JSET | bpf.BPF_K, 1, 0, 0x02}, // Check tcp.flags.SYN
{bpf.BPF_JMP | bpf.BPF_JSET | bpf.BPF_K, 4, 12, 0x01}, // Check if tcp.flags.FIN is set

// If SYN is set, increment the counter, mem[0]++
{bpf.BPF_LD | bpf.BPF_MEM, 0, 0, 0}, // Load memory 0 (SYN count) in accumulator
{bpf.BPF_ALU | bpf.BPF_ADD | bpf.BPF_K, 0, 0, 1}, // Increment the accumulator by one
{bpf.BPF_ST | bpf.BPF_MEM | bpf.BPF_W, 0, 0, 0}, // Store the value from accumulator to memory 0
{bpf.BPF_JMP | bpf.BPF_JA, 3, 0, 0}, // Go check if something is

// if FIN is set, increment the counter, mem[1]++
{bpf.BPF_LD | bpf.BPF_MEM, 0, 0, 1}, // Load memory 1 (FIN count) in accumulator
{bpf.BPF_ALU | bpf.BPF_ADD | bpf.BPF_K, 0, 0, 1}, // Increment the accumulator by one
{bpf.BPF_ST | bpf.BPF_MEM | bpf.BPF_W, 0, 0, 1}, // Store the value from accumulator to memory

// if SYN count is more than 3 times greater than FIN count something is wrong
{bpf.BPF_LD | bpf.BPF_MEM, 0, 0, 0}, // Load SYN count in accumulator
{bpf.BPF_ALU | bpf.BPF_DIV | bpf.BPF_K, 0, 0, 3}, // divide SYN count by 3
{bpf.BPF_LDX | bpf.BPF_MEM | bpf.BPF_W, 0, 0, 1}, // Load FIN count in index
{bpf.BPF_JMP | bpf.BPF_JGT | bpf.BPF_X, 0, 1, 0}, // if #SYN/3 > #FIN

// Alert the controller
{bpf.BPF_RET, 0, 0, 0xffff},

GEANT Testbed Service

Could a next step be Data Plane programmability?
◦ Allow large scale forwarding, telemetry, anomaly detection experiments

◦ Can this provide some solution to the outstanding GTS problems?

◦ Use this approach for debugging, insert a BPF “probe”?

◦ How should that work in a multi-tenant network?
◦ Need to make sure no interference between tenants

◦ Isolation is harder when you can do whatever you want with the cables …

◦ What deployment steps could we envision?
1. Have a BPF Switch Resource Type to create a virtual network between nodes

2. Add NetFPGAs to the set of Resource Types of GTS

◦ When defining a GTS testbed topology provide the FPGA bitfile?

◦ Would allow large scale experiment on data plane processing

◦ Though are NetFPGA suitable for this ? (what about a bad flash?)

Future Work
A language to describe the functions

◦ Writing the “SYN/FIN” ratio module took couple of hours …

◦ P4 is a perfect candidate (Sigcomm 2014)

◦ Currently working on a P4 to BPF compiler
◦ Was hoping to get it working before the workshop … Lexer and Parser are done

Controller to Switch communication
◦ How do you send the BPF code to the switch?

◦ What do you send, the full program, just a diff of the update?

◦ Trade-off between switch complexity and data transferred

How to expose metadata
◦ Telemetry require buffer occupancy, current CPU load, memory utilisation …

◦ Most sampling processes require an accurate timestamp

◦ Go for the microcontroller approach, memory map the metadata?

Questions?
SIMON.JOUET@GLASGOW.AC.UK

mailto:Simon.jouet@Glasgow.ac.uk

