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INTRODUCTION 

 In the era of the Internet of Things 

(IoT), numerous devices form a vast 

infrastructure 

 Devices can process tasks and 

exchange data 

 Data can be processed at the 

devices, at the edge of the network 

(Edge/Fog) or at the Cloud 



EDGE NODES 

 Current research efforts focus on the 

data streams management at the edge 

 

 Edge Nodes (ENs) act as distributed 

data repositories where queries can be 

executed 

 

 ENs are responsible to report the 

results to the requested entity 



EDGE NODES 

 We deal with queries allocation to the appropriate ENs 

 Queries are reported into a set of Query Controllers 

(QCs) 

 It is a multi-dimensional problem involving queries 

and ENs characteristics 



HIGH LEVEL DESCRIPTION 

 Step 1. Classify queries into a set of complexity 

classes 

 Step 2. Compare the requirements of queries with 

the ENs' load 

 We propose models for both steps  

 An ensemble similarity scheme for the estimation of the 

complexity class  

 Decision for the selection of ENs based on the current and 

future load 



HIGH LEVEL DESCRIPTION 

 A Query Processor (QP) is adopted in every EN to 

respond to any incoming query 

 

 QCs receive queries, `invoke' the appropriate QPs, get 

their responses and return the final result 

 



HIGH LEVEL DESCRIPTION 

 In each EN, a dataset is formulated i.e., a 

geodistributed local data repository 

 

 Each dataset stores multivariate data 



MATCHING QUERIES WITH PROCESSORS 

 Every EN/QP exhibits specific characteristics 

 We adopt:  

 The load  

 The speed 

 

 Queries also have a set of characteristics 

 We adopt: 

 The complexity  

 The need for instant response 

 We focus on the query class; it depicts the complexity 

 



DELIVERING THE QUERY COMPLEXITY 

 For delivering the complexity class, we propose a 

`fuzzy' approach and define a Fuzzy Classification 

Process (FCP) 

 The FCP derives the membership of a query in each of 

the pre-defined classes 

 

 We also adopt a dataset of historical queries together 

with their corresponding classes 

 The same class may be involved in multiple tuples, 

thus, in multiple queries 



DELIVERING THE QUERY COMPLEXITY 

 We build on top of a function f  

 f gets the query and delivers a similarity vector 

 Example: qs = <0.2, 0.8, 0.3> 

 The ensemble scheme evaluates the final similarity 

between the query and every tuple in the training set 



THE ENSEMBLE SCHEME 

 Similarity metrics are applied on each tuple classified 

into a class 

 All the results are aggregated 

 Every single result represents the membership of the 

query to a ‘virtual’ fuzzy set 

 We adopt the Hamacher product for the final 

aggregation 



THE ENSEMBLE SCHEME 

 Disagreements are managed through the use of top-k 

similarity values based on their significance level 

 The Significance Level (SL) depicts if a value is 

‘representative’ for many other results 

 Density based: Only values with a ‘dense’ neighborhood 

are considered  

 



THE ENSEMBLE SCHEME 

 Over a set of aggregated similarity values for a class, 

we apply an operator  

 We adopt the Quasi-Arithmetic mean for the second 

level of aggregation 

 



THE MATCHING PROCESS 

 We consider an additional vector containing steps for 

each complexity class 

 The expected number of steps for a query is compared 

with the available load 

 When the number of steps can be covered: reward 

 Otherwise: penalty 

 We process both, the current and the future load 

 



EXPERIMENTAL EVALUATION 

 Datasets 

 Queries found at http://www.tpc.org 

 For each, we define the complexity class (six classes)* 

 

 Performance Metrics 

 Ψ: seconds to allocate a query 

 Ξ: difference of the selected load with the lowest 

 

 Ties management 

 Scenario A: Random selection 

 Scenario B: The lowest load first 

* Vashistha, A., Jain, S., 'Measuring Query Complexity in SQLShare Workload', Proc. of the Int. 

Conf. on Management of Data, 2016. 



EXPERIMENTAL EVALUATION 

 Complexity of the scheme* 

* |QD|: size of the training dataset, |E|: number of similarity metrics, |Θ|: number of classes 



EXPERIMENTAL EVALUATION 

 Conclusion time (in seconds) 

* |EN|: number of nodes 



EXPERIMENTAL EVALUATION 

 The load of the selected EN 



CONCLUSIONS AND FUTURE WORK 

 The proposed model exhibits good 

performance 

 We manage to perform efficient 

allocations 

 

 Our future research plans involve the 
incorporation of more parameters 

 the deadline  

 the statistics of data 

 The aim is to provide an adaptive 
mechanism 



 

 

 

Thank You!! 

 

Questions? 


