
AN EDGE-CENTRIC ENSEMBLE

SCHEME FOR QUERIES ASSIGNMENT

Kostas Kolomvatsos, Christos Anagnostopoulos

School of Computing Science,

University of Glasgow

8th International Workshop on Combinations of Intelligent Methods

and Applications

in conjunction with

30th International Conference on Tools with Artificial Intelligence

November 5-7, 2018

Volos, Greece

OUTLINE

 Introduction

 Edge Nodes

 High Level Description

 Delivering the Complexity Class

 The Ensemble Scheme

 The Matching Process

 Experimental Evaluation

 Conclusions and Future Work

INTRODUCTION

 In the era of the Internet of Things

(IoT), numerous devices form a vast

infrastructure

 Devices can process tasks and

exchange data

 Data can be processed at the

devices, at the edge of the network

(Edge/Fog) or at the Cloud

EDGE NODES

 Current research efforts focus on the

data streams management at the edge

 Edge Nodes (ENs) act as distributed

data repositories where queries can be

executed

 ENs are responsible to report the

results to the requested entity

EDGE NODES

 We deal with queries allocation to the appropriate ENs

 Queries are reported into a set of Query Controllers

(QCs)

 It is a multi-dimensional problem involving queries

and ENs characteristics

HIGH LEVEL DESCRIPTION

 Step 1. Classify queries into a set of complexity

classes

 Step 2. Compare the requirements of queries with

the ENs' load

 We propose models for both steps

 An ensemble similarity scheme for the estimation of the

complexity class

 Decision for the selection of ENs based on the current and

future load

HIGH LEVEL DESCRIPTION

 A Query Processor (QP) is adopted in every EN to

respond to any incoming query

 QCs receive queries, `invoke' the appropriate QPs, get

their responses and return the final result

HIGH LEVEL DESCRIPTION

 In each EN, a dataset is formulated i.e., a

geodistributed local data repository

 Each dataset stores multivariate data

MATCHING QUERIES WITH PROCESSORS

 Every EN/QP exhibits specific characteristics

 We adopt:

 The load

 The speed

 Queries also have a set of characteristics

 We adopt:

 The complexity

 The need for instant response

 We focus on the query class; it depicts the complexity

DELIVERING THE QUERY COMPLEXITY

 For delivering the complexity class, we propose a

`fuzzy' approach and define a Fuzzy Classification

Process (FCP)

 The FCP derives the membership of a query in each of

the pre-defined classes

 We also adopt a dataset of historical queries together

with their corresponding classes

 The same class may be involved in multiple tuples,

thus, in multiple queries

DELIVERING THE QUERY COMPLEXITY

 We build on top of a function f

 f gets the query and delivers a similarity vector

 Example: qs = <0.2, 0.8, 0.3>

 The ensemble scheme evaluates the final similarity

between the query and every tuple in the training set

THE ENSEMBLE SCHEME

 Similarity metrics are applied on each tuple classified

into a class

 All the results are aggregated

 Every single result represents the membership of the

query to a ‘virtual’ fuzzy set

 We adopt the Hamacher product for the final

aggregation

THE ENSEMBLE SCHEME

 Disagreements are managed through the use of top-k

similarity values based on their significance level

 The Significance Level (SL) depicts if a value is

‘representative’ for many other results

 Density based: Only values with a ‘dense’ neighborhood

are considered

THE ENSEMBLE SCHEME

 Over a set of aggregated similarity values for a class,

we apply an operator

 We adopt the Quasi-Arithmetic mean for the second

level of aggregation

THE MATCHING PROCESS

 We consider an additional vector containing steps for

each complexity class

 The expected number of steps for a query is compared

with the available load

 When the number of steps can be covered: reward

 Otherwise: penalty

 We process both, the current and the future load

EXPERIMENTAL EVALUATION

 Datasets

 Queries found at http://www.tpc.org

 For each, we define the complexity class (six classes)*

 Performance Metrics

 Ψ: seconds to allocate a query

 Ξ: difference of the selected load with the lowest

 Ties management

 Scenario A: Random selection

 Scenario B: The lowest load first

* Vashistha, A., Jain, S., 'Measuring Query Complexity in SQLShare Workload', Proc. of the Int.

Conf. on Management of Data, 2016.

EXPERIMENTAL EVALUATION

 Complexity of the scheme*

* |QD|: size of the training dataset, |E|: number of similarity metrics, |Θ|: number of classes

EXPERIMENTAL EVALUATION

 Conclusion time (in seconds)

* |EN|: number of nodes

EXPERIMENTAL EVALUATION

 The load of the selected EN

CONCLUSIONS AND FUTURE WORK

 The proposed model exhibits good

performance

 We manage to perform efficient

allocations

 Our future research plans involve the
incorporation of more parameters

 the deadline

 the statistics of data

 The aim is to provide an adaptive
mechanism

Thank You!!

Questions?

