
AN EDGE-CENTRIC ENSEMBLE 

SCHEME FOR QUERIES ASSIGNMENT 

Kostas Kolomvatsos, Christos Anagnostopoulos 

School of Computing Science,  

University of Glasgow 

 

 
8th International Workshop on Combinations of Intelligent Methods 

and Applications 

in conjunction with 

30th International Conference on Tools with Artificial Intelligence 

November 5-7, 2018 

Volos, Greece 

 



OUTLINE 

 Introduction 

 Edge Nodes 

 High Level Description 

 Delivering the Complexity Class 

 The Ensemble Scheme 

 The Matching Process 

 Experimental Evaluation 

 Conclusions and Future Work 

 

 



INTRODUCTION 

 In the era of the Internet of Things 

(IoT), numerous devices form a vast 

infrastructure 

 Devices can process tasks and 

exchange data 

 Data can be processed at the 

devices, at the edge of the network 

(Edge/Fog) or at the Cloud 



EDGE NODES 

 Current research efforts focus on the 

data streams management at the edge 

 

 Edge Nodes (ENs) act as distributed 

data repositories where queries can be 

executed 

 

 ENs are responsible to report the 

results to the requested entity 



EDGE NODES 

 We deal with queries allocation to the appropriate ENs 

 Queries are reported into a set of Query Controllers 

(QCs) 

 It is a multi-dimensional problem involving queries 

and ENs characteristics 



HIGH LEVEL DESCRIPTION 

 Step 1. Classify queries into a set of complexity 

classes 

 Step 2. Compare the requirements of queries with 

the ENs' load 

 We propose models for both steps  

 An ensemble similarity scheme for the estimation of the 

complexity class  

 Decision for the selection of ENs based on the current and 

future load 



HIGH LEVEL DESCRIPTION 

 A Query Processor (QP) is adopted in every EN to 

respond to any incoming query 

 

 QCs receive queries, `invoke' the appropriate QPs, get 

their responses and return the final result 

 



HIGH LEVEL DESCRIPTION 

 In each EN, a dataset is formulated i.e., a 

geodistributed local data repository 

 

 Each dataset stores multivariate data 



MATCHING QUERIES WITH PROCESSORS 

 Every EN/QP exhibits specific characteristics 

 We adopt:  

 The load  

 The speed 

 

 Queries also have a set of characteristics 

 We adopt: 

 The complexity  

 The need for instant response 

 We focus on the query class; it depicts the complexity 

 



DELIVERING THE QUERY COMPLEXITY 

 For delivering the complexity class, we propose a 

`fuzzy' approach and define a Fuzzy Classification 

Process (FCP) 

 The FCP derives the membership of a query in each of 

the pre-defined classes 

 

 We also adopt a dataset of historical queries together 

with their corresponding classes 

 The same class may be involved in multiple tuples, 

thus, in multiple queries 



DELIVERING THE QUERY COMPLEXITY 

 We build on top of a function f  

 f gets the query and delivers a similarity vector 

 Example: qs = <0.2, 0.8, 0.3> 

 The ensemble scheme evaluates the final similarity 

between the query and every tuple in the training set 



THE ENSEMBLE SCHEME 

 Similarity metrics are applied on each tuple classified 

into a class 

 All the results are aggregated 

 Every single result represents the membership of the 

query to a ‘virtual’ fuzzy set 

 We adopt the Hamacher product for the final 

aggregation 



THE ENSEMBLE SCHEME 

 Disagreements are managed through the use of top-k 

similarity values based on their significance level 

 The Significance Level (SL) depicts if a value is 

‘representative’ for many other results 

 Density based: Only values with a ‘dense’ neighborhood 

are considered  

 



THE ENSEMBLE SCHEME 

 Over a set of aggregated similarity values for a class, 

we apply an operator  

 We adopt the Quasi-Arithmetic mean for the second 

level of aggregation 

 



THE MATCHING PROCESS 

 We consider an additional vector containing steps for 

each complexity class 

 The expected number of steps for a query is compared 

with the available load 

 When the number of steps can be covered: reward 

 Otherwise: penalty 

 We process both, the current and the future load 

 



EXPERIMENTAL EVALUATION 

 Datasets 

 Queries found at http://www.tpc.org 

 For each, we define the complexity class (six classes)* 

 

 Performance Metrics 

 Ψ: seconds to allocate a query 

 Ξ: difference of the selected load with the lowest 

 

 Ties management 

 Scenario A: Random selection 

 Scenario B: The lowest load first 

* Vashistha, A., Jain, S., 'Measuring Query Complexity in SQLShare Workload', Proc. of the Int. 

Conf. on Management of Data, 2016. 



EXPERIMENTAL EVALUATION 

 Complexity of the scheme* 

* |QD|: size of the training dataset, |E|: number of similarity metrics, |Θ|: number of classes 



EXPERIMENTAL EVALUATION 

 Conclusion time (in seconds) 

* |EN|: number of nodes 



EXPERIMENTAL EVALUATION 

 The load of the selected EN 



CONCLUSIONS AND FUTURE WORK 

 The proposed model exhibits good 

performance 

 We manage to perform efficient 

allocations 

 

 Our future research plans involve the 
incorporation of more parameters 

 the deadline  

 the statistics of data 

 The aim is to provide an adaptive 
mechanism 



 

 

 

Thank You!! 

 

Questions? 


