

Motivation

- Enterprise networks rely on middleboxes
 - 45% of network devices
 - The need for network processing will increase even further
- Public cloud computing
 - Growing adoption (36% Forrester)
 - Migrating compute services is well supported
 - Migrating network services (network functions) is hard

Goal

- To enable NFV for tenants of (public) clouds
- Make cloud-native NFs that support
 - Elasticity
 - Automated management
 - Scalability
 - Pay as you go
- How do we get there?
 - Advanced network programmability
 - Stateless NFs (state and functionality should be separated) that run on top of commodity VMs and hypervisors

Related work

CloudNaaS

Allows deployment of NFs in a private cloud deployment

APLOMB

Outsourcing middleboxes to the cloud

Startos

- Network-aware orchestration for cloud middleboxes
- Abstraction for cloud middleboxes

Contributions of the paper

- we looked at the existing limitations of public laaS clouds that challenge the use of an NFV framework by tenants
- 2. we present GNFC, an NFV framework deployable in public clouds
- 3. we evaluate GNFC over Amazon EC2, Google Compute Engine and Microsoft Azure

Limits for public cloud users

- Programmability
 - Extremely limited view and programmability
- IP forwarding
- Protocol support
 - Many protocols are filtered out or handled in a special way

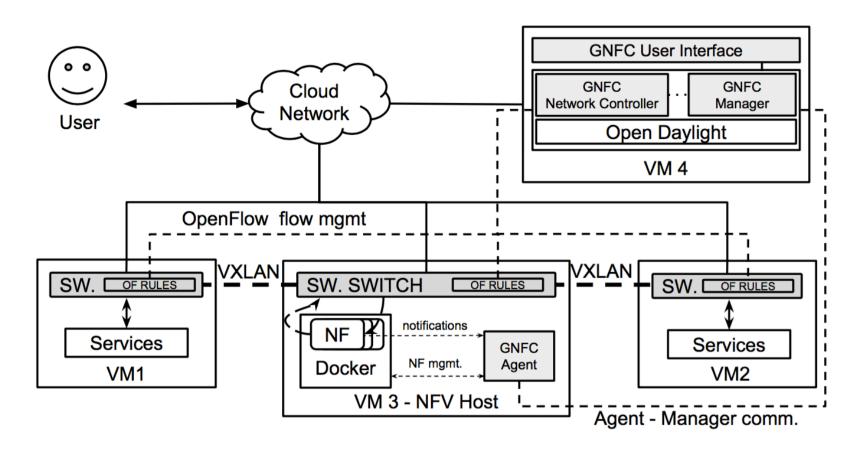
	EC2	Azure	GCE
GRE	✓	X	X
VXLAN	✓	✓	✓

- Support for NFV frameworks
 - Custom hypervisors or hardware can not be deployed

Glasgow Network Functions

- GNFC: Glasgow Network Function for the Cloud
- An NFV framework
- Can be deployed over public cloud infrastructures
- Can attach various NFs to selected user traffic

Open-source: http://glanf.dcs.gla.ac.uk

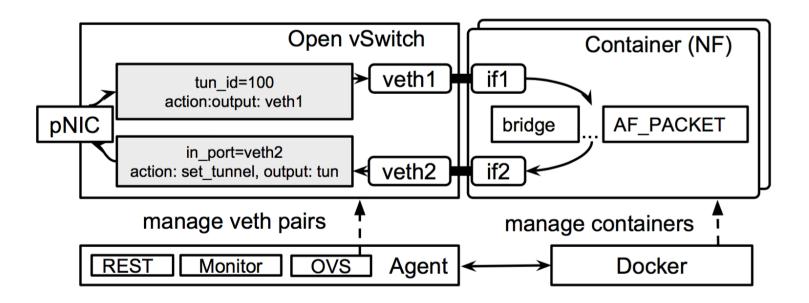

GNFC highlights

- VXLAN overlay (tunneled) network
- OpenFlow-based SDN
- Transparent traffic redirection
 - no change in packets
- Containers instead of VMs for NFs

Containers

- Lightweight "virtualization"
- Fast create/start/stop/delete
- High performance
 - Small delay, high throughput, low memory footprint
- Reusable / Shareable
- Traditional software environment
- Micro-service architecture
- Challenges (by Ramki Krishnan, Dell 45 minutes ago)
 - "Can containers offer the isolation and security that VMs offer?"
 - "Several vNFs can not be hosted in containers in this moment"

GNFC components

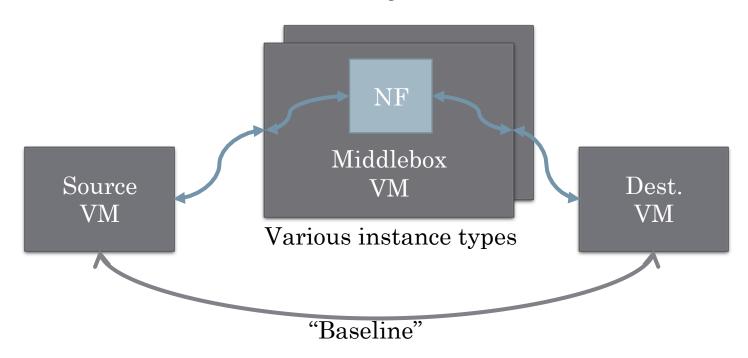


Transparent redirection

Hop	VM	Match	Action		
1	VM1	in_port=LOCAL	set_tunnel:100		
		nw_dst=VM2	set_field:VM3->tun_dst		
			output:tunnel		
2	VM3	in_port=eth0	output:veth1 (NF1's input)		
		tun_id=100			
	Middle	box processing of VM1	→ VM2 packets in NF1		
3	VM3	in_port=veth2	set_tunnel:101		
		(NF1's output)	set_field:VM2->tun_dst		
			output:tunnel		
4	VM2	in_port=LOCAL	set_tunnel:102		
		nw_dst=VM1	set_field:VM3->tun_dst		
			output:tunnel		
5	VM3	in_port=eth0	output:veth1 (NF1's input)		
		tun_id=102			
	Middlebox processing of VM2 → VM1 packets in NF1				
6	VM3	in_port=veth2	set_tunnel:103		
		(NF1's output)	set_field:VM1->tun_dst		
			output:tunnel		
7	VM1	in_port=eth0	output:LOCAL		
		tun_id=103			

GNFC Host

The VM that runs the NFs

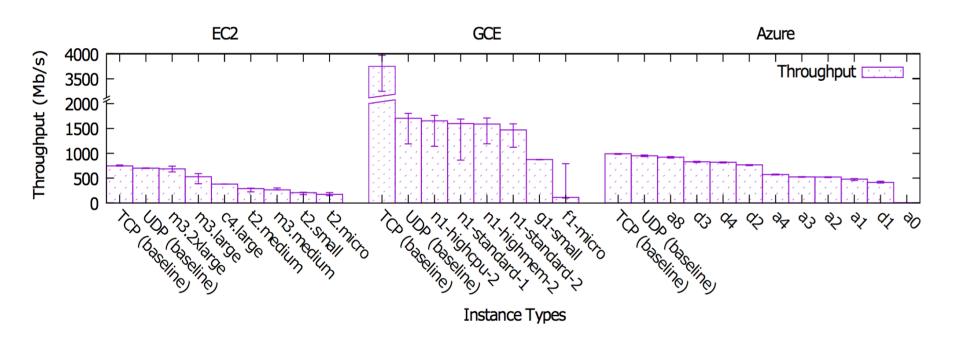


GNFC NFs

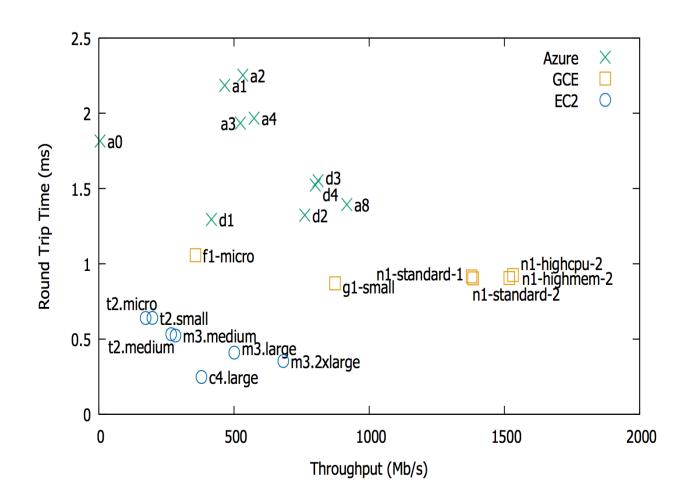
- There are no restrictions for NFs
 - They need to forward packets between two interfaces
- Available example NFs:
 - Firewall (iptables-based)
 - Traffic control
 - HTTP filter
 - Rate limiter
 - SNORT
 - •
- Open source, all defined with Dockerfiles: https://github.com/glanf/dockerfiles

Experimental results

- Focused on the overhead of traffic tunneling through a NF
 - We requested new VMs for middleboxes in every measurement round (10 measurements / instance type)
- The middlebox VM was running one wire NF



GRE vs VXLAN (EC2 only)


- Only Amazon EC2 supports both
- GRE performs a bit better for our measurements
 - Can be explained with a lower encapsulation overhead

	RTT (ms)			Throughput (Mbit/s)		
Instance	GRE	VXLAN	G/V	GRE	VXLAN	G/V
t2.micro	0.61	0.65	0.94	214.50	215.50	1.00
t2.small	0.64	0.62	1.03	232.50	236.50	0.98
t2.medium	0.49	0.51	0.97	292.50	300.00	0.97
m3.medium	0.48	0.47	1.01	290.50	286.50	1.01
m3.large	0.39	0.42	0.93	608.00	579.00	1.05
m3.2xlarge	0.33	0.37	0.89	745.00	696.50	1.07
c4.large	0.23	0.25	0.94	380.00	380.00	1.00
		Average:	0.95		Average:	1.01

End-to-end throughput

RTT / throughput

Summary of results

- Instance price / achievable throughput through the VM is not linear
- There are significant differences between the 3 major providers
- According to our measurements from May 2015

Provider	Throughput	Latency	Variance
Amazon EC2	low	low	low
Google CE	high	medium	high
Microsoft Azure	medium	high	low

Conclusion

- To enhance cloud adoption of enterprises, NFV should be supported in public clouds
- Glasgow Network Functions for the Cloud (GNFC)
 - Container-based NFV framework that can be deployed over existing public clouds
 - In public clouds we use a overlay network based on VXLAN
 - Enables basic NFV for tenants
 - Evaluated over three public clouds

Thank you!

- Contact: <u>Richard.Cziva@glasgow.ac.uk</u>
- http://netlab.dcs.gla.ac.uk