

Network Function Virtualization in GTS

Richard Cziva

University of Glasgow NORDUnet

NORDUnet Network Function Virtualization Nordic Gateway for Research & Education

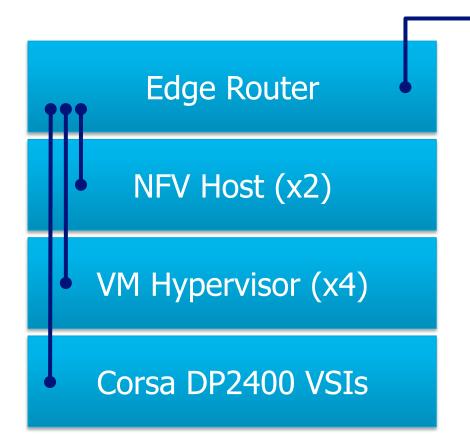
- Moving network services from hardware to software
 - Firewalls
 - Caches
 - Rate limiters
 - . .
- Trending topic between operators
 - and recently in research too

Why do we need NFV?

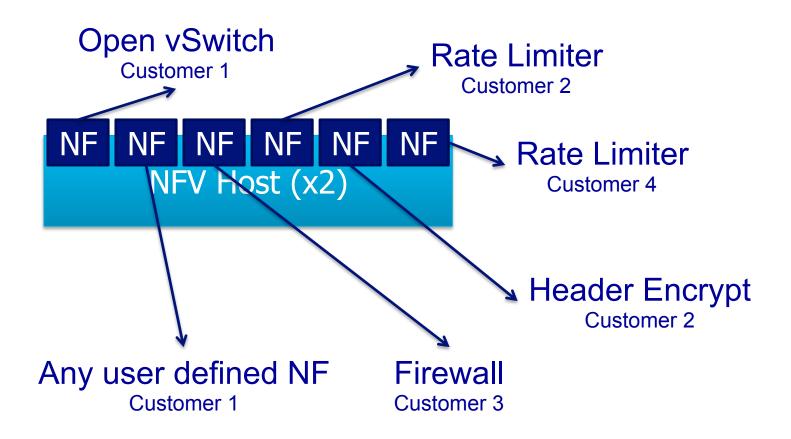
- We are facing increase in:
 - Number of connected clients
 - Amount of aggregate traffic
 - Needs for specialized services

Traditional middlebox and network management can't cope with this in an efficient manner

- Virtualization has many benefits
 - CAPEX/OPEX savings
 - Increased automation, no human intervention
 - Brings agility and fault tolerance to the infrastructure


NFV in GTS

- GTS is an experimental network testbed service
 - We could use NFV "internally"
 - For monitoring purposes
 - To enforce Quality of Service
 - To implement virtualized resources (e.g., Open vSwitch)
 - Also, we can allow users to use and experiment with NFV in their network testbeds
- During the last 10 months, we took the first early steps

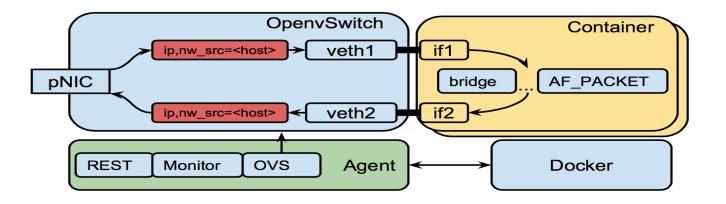

NFV in GTS Architecture

High-speed uplink to remote locations

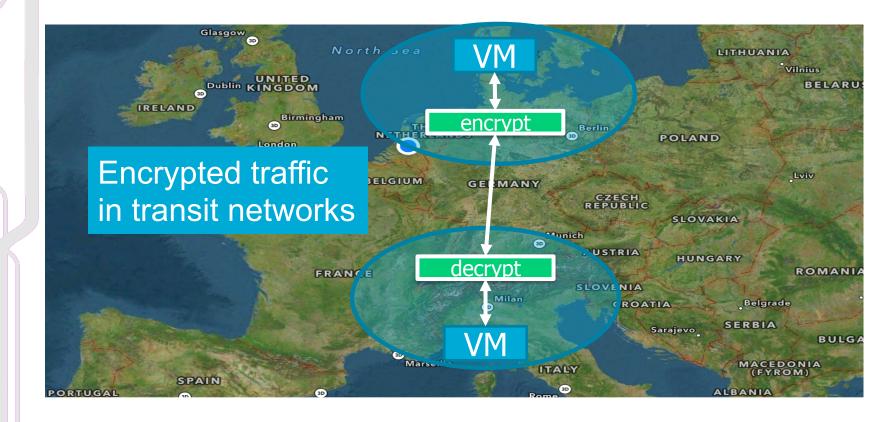
NFV in GTS Architecture

Containers for NFV

- Lightweight "virtualization"
 - Very high NF to host density
 - Good chaining properties
- Fast create/start/stop/delete
- Small latency, high throughput, low memory usage
- Containers are easily reusable / shareable
- Traditional software environment
- Microservices architecture



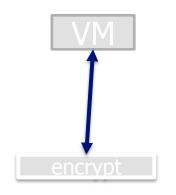
ORDUnet What does the container do?


Inside the NFV Host

NFV – User perspective

NFV DSL - hosts

```
host {
       id = "hl"
       port { id = "ethl" }
       location = "MIA"
host {
       id = "h2"
       port { id = "ethl" }
       location = "GVA"
```



NFV DSL - NFs

```
nf {
        id = "nfl"
        template = "gvs/encrypt"
        port { id = "src" }
                                                encrypt
        port { id = "dst" }
        location = "MIA"
nf {
        id = nf2
        template = "gvs/decrypt"
                                                decrypt
        port { id = "src" }
        port { id = "dst" }
        location = "GVA"
```


NFV DSL - VCs and links

```
link {
      id = "11"
       port { id = "src" }
      port { id = "dst" }
adjacency hl.ethl, ll.src
adjacency ll.dst, nfl.src
```


Available container NFs

- Software switch
- Firewall
- HTTP proxy
- Network measurement functions

- Introducing delay
- Rate limiter
- DNS load balancer
- SNORT

More information / publications at: http://netlab.dcs.gla.ac.uk/

NORDUnet OFX OpenFlow Switch resource

```
OFX1soft {
  ofx {
    id="OFX2"
    location="lab1"
    switchIPv4Addr="10.10.10.2"
    switchSubnetMaskv4="255.255.255.0"
    controllerIPv4="10.10.10.100"
    controllerPort="6633"
    controllerIPv4Secondary="10.10.10.101"
    controllerPortSecondary="6634"
    OpenFlowVersion="OpenFlow13"
    switchMode="soft"
    port {
      ofport=1
      id="P1"
    port {
      ofport=2
      id="P2"
    port {
      id="CTRL"
      mode="CONTROL"
```

- An OpenFlow resource (called OFX) can be described with a DSL
- User defines:
 - OpenFlow port (physical) ids
 - OpenFlow protocol version
 - Controllers (primary and secondary)
 - IP address of the switch
 - Switch DPID
 - Location of the resource
 - ..

Mapping OFX to VSI / NF

 Due to the GVM used at GTS, a virtual description can be mapped to different physical (or virtual) resources

OFX virtual OF switch description

mapped to

mapped to

Status: Under testing in the GTS lab Status:
Corsa devices arrive
in Oct 2016 to GTS

LIVE DEMO

- Live demo will show
 - An OFX (OpenFlow switch) mapped to a NF container
 - A rate limiter NF

Thank you

Thank you for your attention!

