
P4	deep	dive
Richard	Cziva
rcziva@es.net

7th September	2017

Agenda

• 9:30	– P4	motivation,	language	overview
• OpenFlow vs	P4
• SDN	today

• ~10:30	– P4	demos,	example	applications
• Ipv4	forwarding	switch
• Calculator	(run	1+1	on	your	router!)
• Multi-hop	route	inspection	(in-network	telemetry)
• Tracking	per-flow	TCP	retransmissions

• Discussions:	data	plane	programmability	@ESnet

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 2

The	road	to	P4
P4	deep	dive

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 3

Software-Defined	Networking

• Programmable	control	over	networks
• Physically	separated	control	plane	the	forwarding	plane
• Most	popular	realization	of	SDN’s	data-plane	abstraction	is	OpenFlow
• OpenFlow was	born	10	years	ago

• And	a	lot	has	changed

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 4

Software-Defined	Networking

• OpenFlow became	the	de	facto	standard	for	network	programming
• Originally	it	was	targeting	LAN	and	DC	networks
• Lately	they	kept	extending	OpenFlow to	support	new	protocols	
(mostly	encapsulation,	network	virtualization)
• VxLAN (2010)
• STT	(Stateless	Transport	Tunnel)	(2012)
• NSH	(2014)
• …

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 5

OpenFlow match	fields

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 6

• Match	fields	keep	growing	and	growing:	hard	for	vendors	to	keep	up

Network	operators	can	have	specific	requirements!
Can	we	let	them	implement	it?

A	partial	solution:	BPF	matching

• Instead	of	fixed	OpenFlow match	fields,	why	don’t	we	use	a	
Berkeley	Packet	Filters (BPF)?
• (The	original	BPF	paper	was	written	by Steven	McCanne and Van	
Jacobson in	1992	while	at Lawrence	Berkeley	Laboratory[9][10])

• BPF	can	be	used	to	describe	a	packet	matching	as	an	directed	
acyclic	graph

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 7

A	partial	solution:	BPF	matching

• A	BPF	program	was	small	enough	to	be	places	to	an	OpenFlow packet	
(OXM	field)
• BPF	can	be	executed	on	any	platform	(platform-independence)
• BPF	relies	on	simple	instructions	(load,	compare)	->	easy	to	
implement	on	hardware

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 8

Network	data-plane	today

• The	ASIC	defines	how	can	we	handle	packets
• ASICs	are	all	closed,	we	can’t	extend	them	if	
required
• Networks	are	designed	using	a	bottom-up	
design

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 9

Fixed	function	ASIC

Switch	OS

API

driver

Networking	tomorrow

• We	want	to	tell	the	device	how	to	behave	
(top	to	bottom	approach)
• Programmable	network	devices:
• PISA	(Flexible	Match+Action ASICs):	Intel	Flexpipe,	
Barefoot	Tofino
• NPU:	Netronome
• CPU:	DPDK,	eBPF,	Open	vSwitch
• FPGA:	Xilinx	NetFPGA

• P4	defines	a	language	to	program	some	of	
these	devices

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 10

Programmable	
switch

Switch	OS

API

driver

Benefits	of	topàbottom approach

• To	network	providers
• Eliminating	”black	boxes”	and	“magic	behavior”
• Developers	can	program,	test	and	debug	network	devices	all	the	way	down
• Custom	routing	/	switching	protocols	can	be	kept	“in-house”

• To	vendors
• Extremely	fast	iteration	and	feature	release
• New	business	models	for	selling	software	and	hardware	separate
• Vendors	can	fix	data-plane	bugs	after	devices	have	been	deployed
• Software	development	practices	used	in	every	phase

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 11

A	general	language:	P4

• P4:	a	language	designed	to	allow	top	to	bottom	programmability
• P4	was	proposed	at	SIGCOMM	2013:	

Bosshart,	Pat,	Dan	Daly,	Glen	Gibb,	Martin	Izzard,	Nick	McKeown,	Jennifer	
Rexford,	Cole	Schlesinger	et	al.	"P4:	Programming	protocol-independent	packet	
processors." ACM	SIGCOMM	Computer	Communication	Review 44,	no.	3	(2014):	
87-95.

• P4	consortium:	over	80	vendors,	many	Universities,	individuals…

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 12

P4	vs	OpenFlow

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 13

P4	in	very	high-level
P4	deep	dive

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 14

P4	three	goals

1. Protocol	independence
• No	native	support	for	any	protocol
• The	programmer	describes	the	protocols

2. Target	independence
• P4	programs	are	designed	to	be implementation-independent
• Can	be	compiled	to	CPUs,	NPUs,	FPGAs,	ASICs,	network	processors,	etc

3. In-field	re-configurability
• Due	to	target	and	protocol	independence	and	the	abstract	language,	P4	
targets	(e.g.,	ASICs)	can	change	their	behavior	over	their	lifetime

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 15

P4	vs	traditional	switches

• In	a	P4	defined	switch	the	data	
plane	is	not	fixed,	but	defined	
by	a	P4	program
• In	a	P4	defined	switch	the	API
between	the	data	plane	and	the	
control	plane	is	defined	by	a	P4	
program

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 16

From:	https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.html

P4	pipeline

• Parser:	Parses	raw	packets	from	wire	into	metadata
• Match	+	Action	tables:	operate	on	metadata	
• Deparser:	Serializes	metadata	into	a	packet
• Metadata	bus:	available	in	the	entire	pipeline

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 17

Table	1 Table	2 Table	n

Deparser

Parser

Metadata	bus

packet packet

An	example	pipeline	from	Corsa

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 18

Could	be	expressed	with	P4!

Language	overview	(P4_16)
P4	deep	dive

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 19

Language	versions

• There	are	multiple	versions	of	the	
language
• Unfortunately	the	versions	are	backwards-
incompatible
• And	some	things	only	work	in	former	
versions	just	now

• I	am	introducing	the	latest:	P4_16
• Smaller	core	language	than	previous	
versions	(only	40	keywords)
• This	is	supposed	to	be	a	stable	language	
definition

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 20

From:	https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.html

Core	abstractions

• Header	types:	define	how	your	protocol	headers	look	like
• Parsers:	tell	them	how	to	parse	headers
• Tables:	contain	state	associating	user-defined	keys	with	actions
• Actions:	describing	how	a	packet	should	be	manipulated
• Match-Action	units:	create	lookup	key,	perform	table	lookup,	execute	
action
• Control	flow:	specifies	the	order	of	applying	match-action	units
• Extern	objects:	registers,	counters,	meters,	etc
• Metadata:	data	structures	associated	with	each	packet

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 21

Header	definitions

• Allows	you,	the	developer	to	describe	
packet	formats	and	name	header	fields
• Fixed	vs	variable	length	fields	are	both	
permitted

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 22

header Ethernet_h {	
bit<48>	dstAddr;	
bit<48>	srcAddr;	
bit<16>	etherType;	

}

header IPv4_h	{	
bit<4>	version;	
bit<4>	ihl;	
bit<8>	diffserv;	
bit<16>	totalLen;	
bit<16>	identification;	
bit<3>	flags;	
bit<13>	fragOffset;	
bit<8>	ttl;	
bit<8>	protocol;	
bit<16>	hdrChecksum;	
bit<32>	srcAddr;	
bit<32>	dstAddr;	
varbit<320>	options;	

}

Parser

• A	finite	state	machine	with	one	start	state	and	two	final	states

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 23

Start

Ethernet?

TCP UDP

Accept

Reject

If	Ethernet

If	TCP

else

else

If	UDP

parserMyParser(){
state	start	{							transition	parse_ethernet;				}				
state	parse_ethernet {								

packet.extract(hdr.ethernet);								
transition	select(hdr.ethernet.etherType)	{												

TYPE_IPV4:	parse_ipv4;						
default:	accept;								

}				
}…
}

Tables

• Tables	contain	state	(pushed	by	the	control	plane)	to	forward	packets
• Tables	describe	a	match-action	unit
• Packet	matching	can	be	done	either:
• Exact	matching
• Longest	Prefix	Match	(LPM)
• Ternary	matching	(masking)

• All	possible	actions	have	to	be	defined	in	advance

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 24

table	ipv4_lpm	{	
reads {

ipv4.dstAddr:	lpm;
}
actions {

forward()
}	

}

Match-Action	units

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 25

From:	https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.html

Actions

• Actions	consist	of	code	and	take	action	data
• Action	data	comes	from	the	control	plane	(e.g.,	IP	addresses	/	port	numbers)

• Specific,	loop-free	primitives	can	be	executed	in	an	action
• Number	of	instructions	must	be	predictable,	so	no	loops	or	
conditional	statements	allowed	here

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 26

action ipv4_forward(macAddr_t dstAddr,	egressSpec_t port)	{
standard_metadata.egress_spec =	port;								
hdr.ethernet.srcAddr =	hdr.ethernet.dstAddr;								
hdr.ethernet.dstAddr =	dstAddr;								
hdr.ipv4.ttl	=	hdr.ipv4.ttl	- 1;				

}

Externs

• Externs	are	architecture	
specific	constructs	with	
well	defined	APIs
• Examples:
• Checksum	calculation
• Registers
• Counters
• Meters

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 27

extern Checksum16	{	
Checksum16();	//	constructor	
void clear();	//	prepare	unit	for	computation	
void update<T>(in T	data);	//	add	data	to	checksum	
void remove<T>(in T	data);	//	remove	data	from	existing	checksum	
bit<16>	get();	//	get	the	checksum	for	the	data	added	since	last	clear	

}

extern register<T>	{				
register(bit<32>	size);				
void read(out	T	result,	in	bit<32>	index);				
void write(in	bit<32>	index,	in	T	value);

}

Metadata

1. User-defined	metadata	(empty	struct at	first	for	each	packet)
• You	can	put	here	anything	you	want
• Accessible	everywhere	in	the	pipeline
• Useful	e.g.,	for	storing	the	packet	hash

2. Intrinsic	metadata	- this	is	provided	by	the	architecture
• Ingress	port,	egress	port	is	defined	here
• Timestamp	when	packet	was	queued,	queue	depth
• Multicast	hash	/	multicast	queue
• Packet	priority,	packet	color
• Egress	port	specification	(e.g.,	output	queue)

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 28

Control	flow

• Stitching	everything	together
• Imperative	program	expressing	the	high-level	logic	and	the	sequence	
for	match-action	unit	invocations

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 29

control ingress(){
[table	definitions	here]
[action	definitions	here]
apply {
if (hdr.ipv4.isValid())	{												
ipv4_lpm.apply();

}
}

}

V1Switch(
ParserImpl(),
verifyChecksum(),
ingress(),
egress(),
computeChecksum(),
DeparserImpl())	main;

P4	compiler,	tools
P4	deep	dive

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 30

P4	compiler

• The	P4	compiler	(p4c)	produces:
1. Data	plane	runtime
2. API	for	managing	the	state	in	the	data	plane

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 31

P4	software	switch

• p4lang/p4c-bm:	generates	JSON	configuration	for	bmv2
• p4lang/bmv2:	software	switch	that	understands	the	JSON	config
• bmv2:	behavior	model	version	2

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 32

myprogram.p4 myprogram.json

bmv2-ss
load

Compile	with	
p4c-bm

Dataplane

API

Runtime	commands

Runtime	API	for	software	switch

• Allows	you	to	manipulate	tables,	read	registers,	counters…

• API	is	easily	usable	with	the	provided	simple_switch_CLI program

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 33

- table_set_default <table	name>	<action	name>	<action	parameters>	
- table_add <table	name>	<action	name>	<match	fields>	=>	<action	parameters>	[priority]	
- table_delete <table	name>	<entry	handle>

p4@p4d2:~$	simple_switch_CLI --thrift-port	9090
Obtaining	JSON	from	switch...Done
Control	utility	for	runtime	P4	table	manipulation
RuntimeCmd:	counter_read counter	0	
this	is	the	direct	counter	for	table	
ipv4_lpmcounter[0]=		BmCounterValue(packets=4,	bytes=88)

Switch	logs	+	debugger

• Simple	switch	logs	are	useful	enough:

• There	is	also	a	gdb like	debugger:
• Breakpoint,	watching	a	header	field,	prints	the	value	of	a	header	field,	etc

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 34

p4@p4d2:~$	tail	-f	/home/p4/p4_tutorial/P4D2_2017/exercises/mri/build/logs/s1.log
[20:58:45.689]	[bmv2]	[D]	[thread	1572]	[94.0]	[cxt 0]	Pipeline	'ingress':	start
[20:58:45.689]	[bmv2]	[D]	[thread	1572]	[94.0]	[cxt 0]	Pipeline	'ingress':	end
[20:58:45.689]	[bmv2]	[D]	[thread	1572]	[94.0]	[cxt 0]	Egress	port	is	0
….
[22:28:07.263]	[bmv2]	[T]	[thread	1572]	[166.0]	[cxt 0]	Applying	table	'ipv4_lpm’
[22:28:07.263]	[bmv2]	[D]	[thread	1572]	[166.0]	[cxt 0]	Looking	up	key:

*	ipv4.dstAddr								:	0a00020a
[22:28:07.263]	[bmv2]	[D]	[thread	1572]	[166.0]	[cxt 0]	Table	'ipv4_lpm':	hit	with	handle	1

P4	examples
P4	deep	dive

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 35

Calculator

• Who	said	a	network	device	can	not	be	used	as	a	calculator?
• Idea:	
• we	send	packets	describing	an	operation	(e.g.,	1	+	1)
• the	device	performs	the	operation	and	writes	the	result	to	the	packet
• the	device	sends	the	packet	back	to	the	sender	that	parses	the	result	(2)

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 36

H1 P4	switch
1	+	1?

2

A	simple	switch

• Basic	IPv4	forwarding	switch
• Step	by	step:

1. Packet	is	parsed	(Ethernet,	IPv4	only)
2. Packet	is	matched	using	LPM	on	IPv4	

destination	addresses
3. Egress	port	is	set
4. Packet’s	Ethernet	source	and	destination	

is	set
5. TTL	=	TTL	-1
6. Checksum	recalculation

• Additional:	counters

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 37

h1

h2

h3

s1

s2

s3

Multi-Hop	Route	Inspection	(MRI)

• Let’s	find	out	where	has	our	been	in	the	
network
• We	will	use	TCP’s	options	field	for	the	
data	(parsing	a	stack	of	headers)
• Every	switch	will	write	it’s	own	ID	(swid)	
to	the	packet
• Packet	from	H1	-->	H2	will	collect	swids
[1,	2]

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 38

h1

h2

h3

s1

s2

s3

TCP	retransmission	tracker

• Goal:	Identify	all	flows	that	are	
experiencing	TCP	retransmission
1. Track	if	we	have	seen	the	same	TCP	

packet	before	(SYN	number)
1. Based	on	RTO	(min	1s),	exponential	backoff

2. Track	SACK	flags
• Better	with	bursts	of	packets	in	one	RTO

• ”Controller”:	reads	the	counters	from	
the	data-plane

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 39

Client Server

Seq =	1

Seq =	1
Ack =	1

RTO

Client Server

Seq =	2

Seq =	1
Ack =	1

RTO
Seq =	3

Ack =	1,	Sack	=	3
Seq =	2

PISA	/	PSA

• PSA	=	Portable	Switch	Architecture	– WG	in	P4	consortium
• PISA =	Protocol	Independent	Switch	Architecture	– reference	chip	
design
• Reference	architecture	for	a	P4	programmable	switch
• Configurable	parser,	tables,	etc.
• Barefoot	Tofino	is	a	fully	programmable	PISA
• “World’s	fastest	and	most	programmable	switch	series	up	to	6.5Tbps”

• Actual	device:	Edgecore Wedge100BF-65X:	2RU	65x100GE,	6.5	Tbit/s

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 40

Takeaway

• P4	advocates	a	top-down	approach	for	network	programming
• Instead	of	leaving	the	devices	tell	us	how	they	process	packets	
=>	we	would	like	to	tell	them	how	to	do	it

• P4	is	just	one	standard,	many	more	to	come,	however:

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 41

In	the	next	few	years	data-plane	programmability	
will	become	commonplace	and	P4	plays	an	important	role	in	it

References

• Figures	and	some	demos	have	been	selected:
• P4	tutorial	slides	at	SIGCOMM:	
https://github.com/p4lang/tutorials/blob/master/SIGCOMM_2016/p4-
tutorial-slides.pdf
• P4	language	docs:	https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-
spec.html
• Examples	from	Github:	https://github.com/p4lang/tutorials

• P4	paper

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 42

Thank	you

Thank	you	for	your	attention!

04/10/2017 P4	deep	dive	@ESnet	- Richard	Cziva 43

