i p NLETLAB

'/ p J . ‘ NETWORKED SYSTEMS RESEARCH LABORATORY

' Umversrcy School of
angW Computing Science

4 > //’
@
(a a o . :

Dynamic, Latency-Optimal vNF
Placement at the Network Edge

Richard Cziva, Christos Anagnostopoulos, Dimitrios P Pezaros | University of Glasgow | Richard.Cziva@glasgow.ac.uk | INFOCOM’18 | Honolulu, Hawaii




Number of connected devices
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Source: Ericsson IoT forecast
https.//www.ericsson.com/en/mobility-report/internet-of-things-forecast
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Increased expectations

- Future networks are expected to support - Connected by
- Context-aware - High-bandwidth and
- Ultra-reliable - Low-latency connections

- User-specific network services

Example services: video content caches, user-specific
firewalls, DDoS mitigation modules, etc.
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Opportunities with Edge NFV

One way to solve these challenges is to
bring Network Function Virtualization to the Network Edge

- Network Function Virtualization - Multi-Access Edge Computing

- Decoupling network services from - Compute infrastructure at the edge
hardware and running them in of the network
software

- Also known as “fog computing”

+ Close proximity to the user => low
latency connectivity

- Services at the edge save utilization
for the core

- Used in data centers, in the core of
the network

- Lacks latency-optimal service
orchestration
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Latency-optimal vNF placement

We focus on placing vNFs to latency-optimal edge locations

+ For each vNF association, we need to find a hosting device where a user-
to-vNF end-to-end latency is minimal!

Given: topology, hosting devices (with capabilities), latency on
links, user’s locations

Problem input:
compute)

Edge Node 1 Router Edge Node 1
(2 CPU cores) 5 ms 5 ms (1 CPU core)

ier to vNF assigment, vNF requirements (latency,

NF (2CPU cores, max 30 ms from user)

Output: vNF to edge mapping

Should be allocated to
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NF assignments

Delay: 40 ms

Delay: 40 ms
Edge properties:
Router - CPU / Memory available

Delay: 5 ms Delay: 5 ms Link properties:
- Bandwidth available (cost)

- Delay

Edge Node Edge Node

Goal is to have a placement,

where:

- All NFs are placed and traffic is
router through them

- No overloading on links / edge
devices

Delay: 3 ms

é
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Internet

Delay: 40 ms

Delay: 40 ms

Delay: 5 ms

Edge Node
BN
I

NI

Delay: 3 ms Delay: 3 ms
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T Edge vNF Placement ILP

H = {hy,h2,hj,...,hg}  Compute hosts (e.g., edge devices) within the
network.
E= {e1,e2,em,...,eg}  All physical links in the network. Decision variable
U= {u1,u2,%0,...,uy} All users associated with network functions. 1 i 1 o b . th
P={p1,p2,Pk,--- PP} All paths in the network. Xijk _ { 1 we a ocate n; to n; using path py
W; Hardware capacity {cpu, memory,io} of the 0 otherwise
hosts h; € H.
Cm Capacity of the link e,, € E. Objective function
A, Latency on the link e,,, € E.
Zx Last host in path px € P. min . E E E Xijklijk
vNF parameters Description pk€EPn°EN hjcH
N = {n},n2,n2,...,n5{}  Network functions to allocate, where the VNF
ng € N is associated to user u, € U. C traint
R; vNF’s host requirements {cpu,memory,io} onstraints
of YNF n; € N. o> XikRi <Wj,Vh; € H (3) Hardware limitations
6; The maximum latency VNF n; € N tolerates ngeN Pr€EP
from its user.
Derived parameters Deseription S N Xiklijk < 6i,¥ng €N @)  Maximum latency
bijk Bandwidth required between the user and the vNF h;€H PrEP
n; in case it is hosted at h; using the path pg.
Derived from the physical topology and the vNF
o
requests. Zhv o Xidk = 1,Vn; € N,Vp, € P (3  Allocate a vNF to 1 host
lijk Latency between the user of the VNF n; in case ’
it is hosted at h; and uses the path py. Derived
fi the physical topol d the vNF ts. . .
e Z Xijkbijk < Cm,Vem € Pk, Vpr € P 6 Bandwidth constraint
Variables Description h;€H
Xijk Binary decision variable denoting if n; is hosted
at h; using the path px. or not. Xijk = 0,n] # Zk,Vn] € N,Vp, € P,Yh; e H  (7)  Valid path constraint
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Are we done?

- The ILP allocates vNFs to latency-optimal location. However:
- User’s move between edge devices
- Latencies change on links frequently
- Other users impact traffic / congestion on the path

- These all impact the once optimal allocation!

We need dynamic re-allocation of edge vINFs
to keep allocation latency-optimal!
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Internet

Delay: 40 ms

Delay: 40 ms

Delay: 5 ms

Edge Node
BN
I

NI

Delay: 3 ms Delay: 3 ms
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NF assignments

Edge properties:
- CPU / Memory available

Link properties:
- Bandwidth available (cost)
- Delay

Goal is to have a placement,

where:

- All NFs are placed and traffic is
router through them

- No overloading on links / edge
devices
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User movement
Optimal vNF allocation Internet

Delay: 40 ms

Delay: 3 ms

Blue user moved between edge nodes
-> allocation has to be re-evaluated
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What if the user moves further?

Internet

Delay: 40 ms /

Rou &r

Delay: 40 ms
\ Delay: 40 ms
\

Reit ar

Delay \ Delay: 5 ms

E<ge Node Edge Node
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Delay: 3 ms

),
A

Richard Cziva, Christos Anagnostopoulos, Dimitrios P Pezaros | University of Glasgow |

Router

Delay: 5 ms

Edge Node
No available
capacity for
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User movement
Sub-optimal vNF allocation Internet
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User movement, vNF migrations
Optimal vNF allocation Internet
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Latency violations

- Assume that each vNF has a latency violation threshold that is a
maximum latency the vNF should get from the user. This is 6,

+ For instance a cache vNF can have 20 ms for this value, while a control
plane vNF can have 150 ms

- Latency can not be guaranteed 100%, so the system will
experience latency violations frequently

- Upcoming latency violations can be mitigated with a new latency-
optimal vNF placement (but that costs migrations and placement
calculation)

Goal: minimize latency violations, while
keeping number of VNF migrations low
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So, the new question is:

How often (when) do we rearrange vNFs?

Every time we can Periodically Optimal time
- easy to implement, - easy to implement, * low number of
always latency- easy to predict latency
optimal allocation migrations violations and
- way too many - can results in too low number of
migrations many latency migrations

violations, if the
period is too long
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How do we get this “optimal time”™?

- Counting latency violations experienced: Mir =) 1(@h0 2550,
ijk
; . 1 if It., > 0. Migration cost between placements

Le=Y L L=y th Lu-{ b > 0,

- o ’ v 0 otherwise

t
Y: if Y;<86, Y= L
Y:) = t k-
fx) {AIE[MO] if ¥; > O, k=0
Reward function

Cumulative sum of all violations at time t

- The challenge is to find the (optimal stopping) time instance t” for
deriving an optimal placement for the vNFs, such that Y, be as
close to the system’s maximum tolerance © as possible

Problem 2. Find the optimal stopping time t* where the
supremum in (14) is attained:

sup E[f(Yz)]. (14)

t>0
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How do we get this “optimal time”™?

Theorem 2. Given an initial optimal vNF placement I, at
time t = 0, we re-evaluate the optimal placement I, at time

instance t such that: For deriving the 1-sla, we have to stop at the first time
o-v, instance ¢t where E[f(Y;41)|Y; < O] <Y, that is, at that ¢
inf {r: ) £P(L=1£) < (Y: — AE[Mo])(1 - Fr(© ~ ¥:))}
= =0 o-v,
(16) > P(L = 0) + (Y: — AE[Mo])FL(© — Y1) + AE[M,] < Y,
£=0
where Fp (£) = Zf:o P(L =1) and P(L = {) is the cumula-

tive distribution and mass function of L in (11), respectively.

Please find proof + solution fundamentals in the paper.

Note: we take only previous observations to make a decision.
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Evaluation

- We have divided the evaluation into two parts:
+ Latency-optimal allocation
-+ Placement scheduling (dynamic extension)

- Simulation environment:
- Gurobi solver used for ILP (with Python binding)

- Python implementation for the optimal stopping time triggering the solver
at the optimal stopping time

TABLE II: Latency tolerance of different vNF types

Type of network function Maximum delay
Real-time (e.g., packet processing functions) 10 ms
Near real-time (e.g., control plane functions) 30 ms
Non real-time (e.g., management functions) 100 ms
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Edge VNF allocation

Allé)cating vNFs to eng devi‘ces and bloud Dbs —

Allocating vNFs to Cl D ly =——=
Edge nodes reach resource capacity -> ocating VNFs to Cloud DCs only

Cloud DC
Edge

Average latency from users to their vNFs (ms)
)
T
|

10 50 100 200 300 400 500 600 700 800 900 1000
Number of total users (3 vNFs per user)
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Latency fluctuations
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Deviation from optimal
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Placement scheduling
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Our solution does not reach the latency violation threshold, and gives low number of migrations.
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Summary

- Edge vNFs can support low-latency — if allocated to the right devices

- Our work proposed a dynamic, latency-optimal vNF allocation
algorithm
- Optimal allocation used Integer Linear Programming
- Dynamic extension was built on top of Optimal Stopping Theory

- Evaluation was conducted using real-world latency characteristics and
a nation-wide network topology

- Our solution reduces the number of migrations by 94.8% and 76.9%
compared to a scheduler that runs every time instance and one that
would periodically trigger vNF migrations to a new optimal placement,
respectively.
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Extra: learning phase
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