
 Policy Injection:
 A Cloud Dataplane DoS Attack

Levente Csikor, Christian Rothenberg, Dimitrios P. Pezaros,
Stefan Schmid, László Toka, Gábor Rétvári

University of Campinas, University of Glasgow,
University of Vienna, Budapest University of Technology and Economics

Public cloud and security
❏ IaaS may be a double edged sword
❏ Promise is zero infrastructure cost, flexible resource

provisioning, high availability, and usage-based pricing
❏ But tenants share compute, storage and network resources
❏ Isolation between tenants is a major worry
❏ Malevolent tenants may interfere with other tenants'

code/data/services

Policy injection: algorithmic complexity attack on the cloud data plane
❏ Policy engine: a shared resource in the hypervisor switch that evaluates users' policies
❏ Injected policy: the attacker installs malicious state(s) into the Policy engine via CMS
❏ Malicious packet sequence: the attacker poses requests to the policy engine that are “difficult” to evaluate against the injected policy
❏ The hypervisor switch spends its time processing malicious requests: DoS for the rest of the tenants

Demo: DoS on Open vSwitch
❏ Policy engine: megaflow

cache/tuple-space search
❏ Injected policy: security policy
❏ Malicious packet sequence: “port scan”
❏ Threat: network DoS for the rest of

co-located tenants

Virtual switch: plausible attack target
❏ Creates the illusion of a per-tenant dedicated switch
❏ Implements the logical datapath, security policies, load-balancing,

monitoring, etc., for each tenant
❏ Implemented on a shared hypervisor switch
❏ Threat model: a malevolent tenant can exhaust a shared resource in

the hypervisor denying network service to the rest of the tenants

Kubernetes network policy
apiVersion:
projectcalico.org/v3
kind: NetworkPolicy
metadata:
 name:malicious-policy
 namespace: default
spec:
 selector: role==’database’
 ingress:
 - action: Allow
 protocol: UDP
 source:
 nets:
 - 10.0.0.1
 - action: Allow
 protocol: UDP
 destination:
 ports:
 - 80
 - action: Allow
 protocol: UDP
 source:
 ports:
 - 12345

Steps of the attack
1. Rent two VMs in the public cloud: the initiator and

the receiver
2. Use the CMS APIs to set up a malicious network

policy to filter the inbound/outbound traffic
between your VMs

3. The corresponding ACL will be installed at the
virtual ports connecting the VMs to the hypervisor
switches

4. Initiates a “port scan” from the initiator VM to the
receiver VM

5. The OVS switch instance at the receiver applies
the injected ACL to the packets

6. Creates lots of megaflow cache entries/ masks in
the OVS fast path classifier

7. Megaflow cache access is denied to victim VMs
8. Victim pushed out to the OVS slow path
9. Performance degradation/DoS

Effects
❏ An attacker can target particular cloud-based services

using a combination of co-location & policy injection
attack, or target all co-located tenants

❏ Reproduced in synthetic setups, OpenStack/OVN, and
Kubernetes/OVN

❏ Default Kubernetes and OpenStack installs not affected
❏ Significant performance penalty

Mitigation
❏ Implement ACLs in iptables
❏ Switch the megaflow cache off
❏ Increase number of CPUs
❏ Offload the OVS datapath to SmartNIC
❏ Use jumbo frames to reduce per-packet

load needed to be processed by OVS
❏ What’s your idea?

